Step |
Hyp |
Ref |
Expression |
1 |
|
pcoval.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
pcoval.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
3 |
|
0re |
⊢ 0 ∈ ℝ |
4 |
|
0le0 |
⊢ 0 ≤ 0 |
5 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
6 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
7 |
3 6
|
elicc2i |
⊢ ( 0 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ ( 1 / 2 ) ) ) |
8 |
3 4 5 7
|
mpbir3an |
⊢ 0 ∈ ( 0 [,] ( 1 / 2 ) ) |
9 |
1 2
|
pcoval1 |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 [,] ( 1 / 2 ) ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ ( 2 · 0 ) ) ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ ( 2 · 0 ) ) ) |
11 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
12 |
11
|
fveq2i |
⊢ ( 𝐹 ‘ ( 2 · 0 ) ) = ( 𝐹 ‘ 0 ) |
13 |
10 12
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |