Metamath Proof Explorer


Theorem pco0

Description: The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses pcoval.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
pcoval.3 ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
Assertion pco0 ( 𝜑 → ( ( 𝐹 ( *𝑝𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) )

Proof

Step Hyp Ref Expression
1 pcoval.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
2 pcoval.3 ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
3 0re 0 ∈ ℝ
4 0le0 0 ≤ 0
5 halfge0 0 ≤ ( 1 / 2 )
6 halfre ( 1 / 2 ) ∈ ℝ
7 3 6 elicc2i ( 0 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ ( 1 / 2 ) ) )
8 3 4 5 7 mpbir3an 0 ∈ ( 0 [,] ( 1 / 2 ) )
9 1 2 pcoval1 ( ( 𝜑 ∧ 0 ∈ ( 0 [,] ( 1 / 2 ) ) ) → ( ( 𝐹 ( *𝑝𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ ( 2 · 0 ) ) )
10 8 9 mpan2 ( 𝜑 → ( ( 𝐹 ( *𝑝𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ ( 2 · 0 ) ) )
11 2t0e0 ( 2 · 0 ) = 0
12 11 fveq2i ( 𝐹 ‘ ( 2 · 0 ) ) = ( 𝐹 ‘ 0 )
13 10 12 eqtrdi ( 𝜑 → ( ( 𝐹 ( *𝑝𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) )