| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcohtpy.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
| 2 |
|
pcohtpy.5 |
⊢ ( 𝜑 → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 ) |
| 3 |
|
pcohtpy.6 |
⊢ ( 𝜑 → 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 ) |
| 4 |
|
pcohtpylem.7 |
⊢ 𝑃 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) ) |
| 5 |
|
pcohtpylem.8 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
| 6 |
|
pcohtpylem.9 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) |
| 7 |
|
isphtpc |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
| 8 |
2 7
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
| 9 |
8
|
simp1d |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 10 |
|
isphtpc |
⊢ ( 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 ↔ ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐾 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ) ) |
| 11 |
3 10
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐾 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ) ) |
| 12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 13 |
9 12 1
|
pcocn |
⊢ ( 𝜑 → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ∈ ( II Cn 𝐽 ) ) |
| 14 |
8
|
simp2d |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
| 15 |
11
|
simp2d |
⊢ ( 𝜑 → 𝐾 ∈ ( II Cn 𝐽 ) ) |
| 16 |
9 14 5
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
| 17 |
16
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) |
| 18 |
12 15 6
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 0 ) = ( 𝐾 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐾 ‘ 1 ) ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 𝐾 ‘ 0 ) ) |
| 20 |
1 17 19
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐾 ‘ 0 ) ) |
| 21 |
14 15 20
|
pcocn |
⊢ ( 𝜑 → ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ∈ ( II Cn 𝐽 ) ) |
| 22 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 23 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) |
| 24 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) |
| 25 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
| 26 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 27 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 28 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 29 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
| 30 |
|
1re |
⊢ 1 ∈ ℝ |
| 31 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 32 |
28 30 31
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
| 33 |
|
elicc01 |
⊢ ( ( 1 / 2 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 1 ) ) |
| 34 |
28 29 32 33
|
mpbir3an |
⊢ ( 1 / 2 ) ∈ ( 0 [,] 1 ) |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ( 0 [,] 1 ) ) |
| 36 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 38 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
| 39 |
9 14 5
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑀 𝑦 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝑀 𝑦 ) = ( 𝐹 ‘ 1 ) ) ) |
| 40 |
39
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 𝑀 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 41 |
40
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 1 𝑀 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 42 |
12 15 6
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑁 𝑦 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑁 𝑦 ) = ( 𝐺 ‘ 1 ) ) ) |
| 43 |
42
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 0 𝑁 𝑦 ) = ( 𝐺 ‘ 0 ) ) |
| 44 |
43
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 0 𝑁 𝑦 ) = ( 𝐺 ‘ 0 ) ) |
| 45 |
38 41 44
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 1 𝑀 𝑦 ) = ( 0 𝑁 𝑦 ) ) |
| 46 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → 𝑥 = ( 1 / 2 ) ) |
| 47 |
46
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑥 ) = ( 2 · ( 1 / 2 ) ) ) |
| 48 |
|
2cn |
⊢ 2 ∈ ℂ |
| 49 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 50 |
48 49
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 51 |
47 50
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑥 ) = 1 ) |
| 52 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( 1 𝑀 𝑦 ) ) |
| 53 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( 1 − 1 ) ) |
| 54 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 55 |
53 54
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) − 1 ) = 0 ) |
| 56 |
55
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( 0 𝑁 𝑦 ) ) |
| 57 |
45 52 56
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) |
| 58 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 59 |
|
0re |
⊢ 0 ∈ ℝ |
| 60 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) |
| 61 |
59 28 60
|
mp2an |
⊢ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ |
| 62 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
| 63 |
58 61 62
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
| 65 |
64 37
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ) ) |
| 66 |
23
|
iihalf1cn |
⊢ ( 𝑧 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑧 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) |
| 67 |
66
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑧 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) ) |
| 68 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 2 · 𝑧 ) = ( 2 · 𝑥 ) ) |
| 69 |
64 37 65 64 67 68
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 2 · 𝑥 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
| 70 |
64 37
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
| 71 |
9 14
|
phtpycn |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
| 72 |
71 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 73 |
64 37 69 70 72
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 2 · 𝑥 ) 𝑀 𝑦 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn 𝐽 ) ) |
| 74 |
|
iccssre |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) |
| 75 |
28 30 74
|
mp2an |
⊢ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ |
| 76 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 77 |
58 75 76
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
| 79 |
78 37
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 80 |
24
|
iihalf2cn |
⊢ ( 𝑧 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑧 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) |
| 81 |
80
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑧 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) ) |
| 82 |
68
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 2 · 𝑧 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
| 83 |
78 37 79 78 81 82
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 84 |
78 37
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
| 85 |
12 15
|
phtpycn |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
| 86 |
85 6
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 87 |
78 37 83 84 86
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn 𝐽 ) ) |
| 88 |
22 23 24 25 26 27 35 37 57 73 87
|
cnmpopc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 89 |
4 88
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 90 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → 𝜑 ) |
| 91 |
|
elii1 |
⊢ ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 𝑠 ≤ ( 1 / 2 ) ) ) |
| 92 |
|
iihalf1 |
⊢ ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
| 93 |
91 92
|
sylbir |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
| 94 |
93
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
| 95 |
9 14
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐻 ) ) |
| 96 |
95 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐻 ) ) |
| 97 |
37 9 14 96
|
htpyi |
⊢ ( ( 𝜑 ∧ ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 2 · 𝑠 ) 𝑀 0 ) = ( 𝐹 ‘ ( 2 · 𝑠 ) ) ∧ ( ( 2 · 𝑠 ) 𝑀 1 ) = ( 𝐻 ‘ ( 2 · 𝑠 ) ) ) ) |
| 98 |
90 94 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( 2 · 𝑠 ) 𝑀 0 ) = ( 𝐹 ‘ ( 2 · 𝑠 ) ) ∧ ( ( 2 · 𝑠 ) 𝑀 1 ) = ( 𝐻 ‘ ( 2 · 𝑠 ) ) ) ) |
| 99 |
98
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) 𝑀 0 ) = ( 𝐹 ‘ ( 2 · 𝑠 ) ) ) |
| 100 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝜑 ) |
| 101 |
|
elii2 |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
| 102 |
101
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
| 103 |
|
iihalf2 |
⊢ ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
| 104 |
102 103
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
| 105 |
12 15
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ⊆ ( 𝐺 ( II Htpy 𝐽 ) 𝐾 ) ) |
| 106 |
105 6
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 ( II Htpy 𝐽 ) 𝐾 ) ) |
| 107 |
37 12 15 106
|
htpyi |
⊢ ( ( 𝜑 ∧ ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) → ( ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) = ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ∧ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) = ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 108 |
100 104 107
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) = ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ∧ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) = ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 109 |
108
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) = ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) |
| 110 |
99 109
|
ifeq12da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑠 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 111 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
| 112 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 113 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑥 = 𝑠 ) |
| 114 |
113
|
breq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑥 ≤ ( 1 / 2 ) ↔ 𝑠 ≤ ( 1 / 2 ) ) ) |
| 115 |
113
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 2 · 𝑥 ) = ( 2 · 𝑠 ) ) |
| 116 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
| 117 |
115 116
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( ( 2 · 𝑠 ) 𝑀 0 ) ) |
| 118 |
115
|
oveq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑠 ) − 1 ) ) |
| 119 |
118 116
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) |
| 120 |
114 117 119
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ) |
| 121 |
|
ovex |
⊢ ( ( 2 · 𝑠 ) 𝑀 0 ) ∈ V |
| 122 |
|
ovex |
⊢ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ∈ V |
| 123 |
121 122
|
ifex |
⊢ if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ∈ V |
| 124 |
120 4 123
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 0 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ) |
| 125 |
111 112 124
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 0 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ) |
| 126 |
9 12
|
pcovalg |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑠 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 127 |
110 125 126
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 0 ) = ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 𝑠 ) ) |
| 128 |
98
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) 𝑀 1 ) = ( 𝐻 ‘ ( 2 · 𝑠 ) ) ) |
| 129 |
108
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) = ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) |
| 130 |
128 129
|
ifeq12da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 2 · 𝑠 ) ) , ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 131 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 132 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑥 = 𝑠 ) |
| 133 |
132
|
breq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑥 ≤ ( 1 / 2 ) ↔ 𝑠 ≤ ( 1 / 2 ) ) ) |
| 134 |
132
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 2 · 𝑥 ) = ( 2 · 𝑠 ) ) |
| 135 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑦 = 1 ) |
| 136 |
134 135
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( ( 2 · 𝑠 ) 𝑀 1 ) ) |
| 137 |
134
|
oveq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑠 ) − 1 ) ) |
| 138 |
137 135
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) |
| 139 |
133 136 138
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ) |
| 140 |
|
ovex |
⊢ ( ( 2 · 𝑠 ) 𝑀 1 ) ∈ V |
| 141 |
|
ovex |
⊢ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ∈ V |
| 142 |
140 141
|
ifex |
⊢ if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ∈ V |
| 143 |
139 4 142
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 1 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ) |
| 144 |
111 131 143
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 1 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ) |
| 145 |
14 15
|
pcovalg |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ‘ 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 2 · 𝑠 ) ) , ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
| 146 |
130 144 145
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 1 ) = ( ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ‘ 𝑠 ) ) |
| 147 |
9 14 5
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑀 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝑀 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) |
| 148 |
147
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑀 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
| 149 |
|
simpl |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑥 = 0 ) |
| 150 |
149 29
|
eqbrtrdi |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑥 ≤ ( 1 / 2 ) ) |
| 151 |
150
|
iftrued |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( ( 2 · 𝑥 ) 𝑀 𝑦 ) ) |
| 152 |
149
|
oveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = ( 2 · 0 ) ) |
| 153 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 154 |
152 153
|
eqtrdi |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = 0 ) |
| 155 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
| 156 |
154 155
|
oveq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( 0 𝑀 𝑠 ) ) |
| 157 |
151 156
|
eqtrd |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( 0 𝑀 𝑠 ) ) |
| 158 |
|
ovex |
⊢ ( 0 𝑀 𝑠 ) ∈ V |
| 159 |
157 4 158
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑃 𝑠 ) = ( 0 𝑀 𝑠 ) ) |
| 160 |
112 111 159
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑃 𝑠 ) = ( 0 𝑀 𝑠 ) ) |
| 161 |
9 12
|
pco0 |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 163 |
148 160 162
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑃 𝑠 ) = ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) ) |
| 164 |
12 15 6
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑁 𝑠 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑁 𝑠 ) = ( 𝐺 ‘ 1 ) ) ) |
| 165 |
164
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑁 𝑠 ) = ( 𝐺 ‘ 1 ) ) |
| 166 |
28 30
|
ltnlei |
⊢ ( ( 1 / 2 ) < 1 ↔ ¬ 1 ≤ ( 1 / 2 ) ) |
| 167 |
31 166
|
mpbi |
⊢ ¬ 1 ≤ ( 1 / 2 ) |
| 168 |
|
simpl |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑥 = 1 ) |
| 169 |
168
|
breq1d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 ≤ ( 1 / 2 ) ↔ 1 ≤ ( 1 / 2 ) ) ) |
| 170 |
167 169
|
mtbiri |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ¬ 𝑥 ≤ ( 1 / 2 ) ) |
| 171 |
170
|
iffalsed |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) |
| 172 |
168
|
oveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = ( 2 · 1 ) ) |
| 173 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 174 |
172 173
|
eqtrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = 2 ) |
| 175 |
174
|
oveq1d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑥 ) − 1 ) = ( 2 − 1 ) ) |
| 176 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 177 |
175 176
|
eqtrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑥 ) − 1 ) = 1 ) |
| 178 |
|
simpr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
| 179 |
177 178
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( 1 𝑁 𝑠 ) ) |
| 180 |
171 179
|
eqtrd |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( 1 𝑁 𝑠 ) ) |
| 181 |
|
ovex |
⊢ ( 1 𝑁 𝑠 ) ∈ V |
| 182 |
180 4 181
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑃 𝑠 ) = ( 1 𝑁 𝑠 ) ) |
| 183 |
131 111 182
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑃 𝑠 ) = ( 1 𝑁 𝑠 ) ) |
| 184 |
9 12
|
pco1 |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 185 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 186 |
165 183 185
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑃 𝑠 ) = ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 1 ) ) |
| 187 |
13 21 89 127 146 163 186
|
isphtpy2d |
⊢ ( 𝜑 → 𝑃 ∈ ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ) |