Step |
Hyp |
Ref |
Expression |
1 |
|
pcohtpy.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
2 |
|
pcohtpy.5 |
⊢ ( 𝜑 → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 ) |
3 |
|
pcohtpy.6 |
⊢ ( 𝜑 → 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 ) |
4 |
|
pcohtpylem.7 |
⊢ 𝑃 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) ) |
5 |
|
pcohtpylem.8 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
6 |
|
pcohtpylem.9 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) |
7 |
|
isphtpc |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
8 |
2 7
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
9 |
8
|
simp1d |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
10 |
|
isphtpc |
⊢ ( 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 ↔ ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐾 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ) ) |
11 |
3 10
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐾 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ) ) |
12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
13 |
9 12 1
|
pcocn |
⊢ ( 𝜑 → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ∈ ( II Cn 𝐽 ) ) |
14 |
8
|
simp2d |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
15 |
11
|
simp2d |
⊢ ( 𝜑 → 𝐾 ∈ ( II Cn 𝐽 ) ) |
16 |
9 14 5
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
17 |
16
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) |
18 |
12 15 6
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 0 ) = ( 𝐾 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐾 ‘ 1 ) ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 𝐾 ‘ 0 ) ) |
20 |
1 17 19
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐾 ‘ 0 ) ) |
21 |
14 15 20
|
pcocn |
⊢ ( 𝜑 → ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ∈ ( II Cn 𝐽 ) ) |
22 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
23 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) |
24 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) |
25 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
26 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
27 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
28 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
29 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
30 |
|
1re |
⊢ 1 ∈ ℝ |
31 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
32 |
28 30 31
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
33 |
|
elicc01 |
⊢ ( ( 1 / 2 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 1 ) ) |
34 |
28 29 32 33
|
mpbir3an |
⊢ ( 1 / 2 ) ∈ ( 0 [,] 1 ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ( 0 [,] 1 ) ) |
36 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
37 |
36
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
38 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
39 |
9 14 5
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑀 𝑦 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝑀 𝑦 ) = ( 𝐹 ‘ 1 ) ) ) |
40 |
39
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 1 𝑀 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
41 |
40
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 1 𝑀 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
42 |
12 15 6
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑁 𝑦 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑁 𝑦 ) = ( 𝐺 ‘ 1 ) ) ) |
43 |
42
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 0 𝑁 𝑦 ) = ( 𝐺 ‘ 0 ) ) |
44 |
43
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 0 𝑁 𝑦 ) = ( 𝐺 ‘ 0 ) ) |
45 |
38 41 44
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 1 𝑀 𝑦 ) = ( 0 𝑁 𝑦 ) ) |
46 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → 𝑥 = ( 1 / 2 ) ) |
47 |
46
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑥 ) = ( 2 · ( 1 / 2 ) ) ) |
48 |
|
2cn |
⊢ 2 ∈ ℂ |
49 |
|
2ne0 |
⊢ 2 ≠ 0 |
50 |
48 49
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
51 |
47 50
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑥 ) = 1 ) |
52 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( 1 𝑀 𝑦 ) ) |
53 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( 1 − 1 ) ) |
54 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
55 |
53 54
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) − 1 ) = 0 ) |
56 |
55
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( 0 𝑁 𝑦 ) ) |
57 |
45 52 56
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = ( 1 / 2 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) |
58 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
59 |
|
0re |
⊢ 0 ∈ ℝ |
60 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) |
61 |
59 28 60
|
mp2an |
⊢ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ |
62 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
63 |
58 61 62
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) |
64 |
63
|
a1i |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
65 |
64 37
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ) ) |
66 |
23
|
iihalf1cn |
⊢ ( 𝑧 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑧 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) |
67 |
66
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] ( 1 / 2 ) ) ↦ ( 2 · 𝑧 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) ) |
68 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 2 · 𝑧 ) = ( 2 · 𝑥 ) ) |
69 |
64 37 65 64 67 68
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 2 · 𝑥 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
70 |
64 37
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
71 |
9 14
|
phtpycn |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
72 |
71 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
73 |
64 37 69 70 72
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 2 · 𝑥 ) 𝑀 𝑦 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn 𝐽 ) ) |
74 |
|
iccssre |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) |
75 |
28 30 74
|
mp2an |
⊢ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ |
76 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
77 |
58 75 76
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) |
78 |
77
|
a1i |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
79 |
78 37
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ) ) |
80 |
24
|
iihalf2cn |
⊢ ( 𝑧 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑧 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) |
81 |
80
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑧 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) ) |
82 |
68
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 2 · 𝑧 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
83 |
78 37 79 78 81 82
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
84 |
78 37
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
85 |
12 15
|
phtpycn |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
86 |
85 6
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
87 |
78 37 83 84 86
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn 𝐽 ) ) |
88 |
22 23 24 25 26 27 35 37 57 73 87
|
cnmpopc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
89 |
4 88
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
90 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → 𝜑 ) |
91 |
|
elii1 |
⊢ ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 𝑠 ≤ ( 1 / 2 ) ) ) |
92 |
|
iihalf1 |
⊢ ( 𝑠 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
93 |
91 92
|
sylbir |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
94 |
93
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) |
95 |
9 14
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐻 ) ) |
96 |
95 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐻 ) ) |
97 |
37 9 14 96
|
htpyi |
⊢ ( ( 𝜑 ∧ ( 2 · 𝑠 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 2 · 𝑠 ) 𝑀 0 ) = ( 𝐹 ‘ ( 2 · 𝑠 ) ) ∧ ( ( 2 · 𝑠 ) 𝑀 1 ) = ( 𝐻 ‘ ( 2 · 𝑠 ) ) ) ) |
98 |
90 94 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( 2 · 𝑠 ) 𝑀 0 ) = ( 𝐹 ‘ ( 2 · 𝑠 ) ) ∧ ( ( 2 · 𝑠 ) 𝑀 1 ) = ( 𝐻 ‘ ( 2 · 𝑠 ) ) ) ) |
99 |
98
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) 𝑀 0 ) = ( 𝐹 ‘ ( 2 · 𝑠 ) ) ) |
100 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝜑 ) |
101 |
|
elii2 |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
102 |
101
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
103 |
|
iihalf2 |
⊢ ( 𝑠 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
104 |
102 103
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
105 |
12 15
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ⊆ ( 𝐺 ( II Htpy 𝐽 ) 𝐾 ) ) |
106 |
105 6
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 ( II Htpy 𝐽 ) 𝐾 ) ) |
107 |
37 12 15 106
|
htpyi |
⊢ ( ( 𝜑 ∧ ( ( 2 · 𝑠 ) − 1 ) ∈ ( 0 [,] 1 ) ) → ( ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) = ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ∧ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) = ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
108 |
100 104 107
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) = ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ∧ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) = ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
109 |
108
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) = ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) |
110 |
99 109
|
ifeq12da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑠 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
111 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
112 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
113 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑥 = 𝑠 ) |
114 |
113
|
breq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑥 ≤ ( 1 / 2 ) ↔ 𝑠 ≤ ( 1 / 2 ) ) ) |
115 |
113
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 2 · 𝑥 ) = ( 2 · 𝑠 ) ) |
116 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
117 |
115 116
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( ( 2 · 𝑠 ) 𝑀 0 ) ) |
118 |
115
|
oveq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑠 ) − 1 ) ) |
119 |
118 116
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) |
120 |
114 117 119
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ) |
121 |
|
ovex |
⊢ ( ( 2 · 𝑠 ) 𝑀 0 ) ∈ V |
122 |
|
ovex |
⊢ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ∈ V |
123 |
121 122
|
ifex |
⊢ if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ∈ V |
124 |
120 4 123
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 0 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ) |
125 |
111 112 124
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 0 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 0 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 0 ) ) ) |
126 |
9 12
|
pcovalg |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐹 ‘ ( 2 · 𝑠 ) ) , ( 𝐺 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
127 |
110 125 126
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 0 ) = ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 𝑠 ) ) |
128 |
98
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ 𝑠 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑠 ) 𝑀 1 ) = ( 𝐻 ‘ ( 2 · 𝑠 ) ) ) |
129 |
108
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ¬ 𝑠 ≤ ( 1 / 2 ) ) → ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) = ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) |
130 |
128 129
|
ifeq12da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 2 · 𝑠 ) ) , ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
131 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
132 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑥 = 𝑠 ) |
133 |
132
|
breq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑥 ≤ ( 1 / 2 ) ↔ 𝑠 ≤ ( 1 / 2 ) ) ) |
134 |
132
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 2 · 𝑥 ) = ( 2 · 𝑠 ) ) |
135 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑦 = 1 ) |
136 |
134 135
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( ( 2 · 𝑠 ) 𝑀 1 ) ) |
137 |
134
|
oveq1d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑠 ) − 1 ) ) |
138 |
137 135
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) |
139 |
133 136 138
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ) |
140 |
|
ovex |
⊢ ( ( 2 · 𝑠 ) 𝑀 1 ) ∈ V |
141 |
|
ovex |
⊢ ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ∈ V |
142 |
140 141
|
ifex |
⊢ if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ∈ V |
143 |
139 4 142
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 1 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ) |
144 |
111 131 143
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 1 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( ( 2 · 𝑠 ) 𝑀 1 ) , ( ( ( 2 · 𝑠 ) − 1 ) 𝑁 1 ) ) ) |
145 |
14 15
|
pcovalg |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ‘ 𝑠 ) = if ( 𝑠 ≤ ( 1 / 2 ) , ( 𝐻 ‘ ( 2 · 𝑠 ) ) , ( 𝐾 ‘ ( ( 2 · 𝑠 ) − 1 ) ) ) ) |
146 |
130 144 145
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝑃 1 ) = ( ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ‘ 𝑠 ) ) |
147 |
9 14 5
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑀 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝑀 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) |
148 |
147
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑀 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
149 |
|
simpl |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑥 = 0 ) |
150 |
149 29
|
eqbrtrdi |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑥 ≤ ( 1 / 2 ) ) |
151 |
150
|
iftrued |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( ( 2 · 𝑥 ) 𝑀 𝑦 ) ) |
152 |
149
|
oveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = ( 2 · 0 ) ) |
153 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
154 |
152 153
|
eqtrdi |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = 0 ) |
155 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
156 |
154 155
|
oveq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑥 ) 𝑀 𝑦 ) = ( 0 𝑀 𝑠 ) ) |
157 |
151 156
|
eqtrd |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( 0 𝑀 𝑠 ) ) |
158 |
|
ovex |
⊢ ( 0 𝑀 𝑠 ) ∈ V |
159 |
157 4 158
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑃 𝑠 ) = ( 0 𝑀 𝑠 ) ) |
160 |
112 111 159
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑃 𝑠 ) = ( 0 𝑀 𝑠 ) ) |
161 |
9 12
|
pco0 |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
163 |
148 160 162
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝑃 𝑠 ) = ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 0 ) ) |
164 |
12 15 6
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑁 𝑠 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑁 𝑠 ) = ( 𝐺 ‘ 1 ) ) ) |
165 |
164
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑁 𝑠 ) = ( 𝐺 ‘ 1 ) ) |
166 |
28 30
|
ltnlei |
⊢ ( ( 1 / 2 ) < 1 ↔ ¬ 1 ≤ ( 1 / 2 ) ) |
167 |
31 166
|
mpbi |
⊢ ¬ 1 ≤ ( 1 / 2 ) |
168 |
|
simpl |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑥 = 1 ) |
169 |
168
|
breq1d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑥 ≤ ( 1 / 2 ) ↔ 1 ≤ ( 1 / 2 ) ) ) |
170 |
167 169
|
mtbiri |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ¬ 𝑥 ≤ ( 1 / 2 ) ) |
171 |
170
|
iffalsed |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) |
172 |
168
|
oveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = ( 2 · 1 ) ) |
173 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
174 |
172 173
|
eqtrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 2 · 𝑥 ) = 2 ) |
175 |
174
|
oveq1d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑥 ) − 1 ) = ( 2 − 1 ) ) |
176 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
177 |
175 176
|
eqtrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( 2 · 𝑥 ) − 1 ) = 1 ) |
178 |
|
simpr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
179 |
177 178
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) = ( 1 𝑁 𝑠 ) ) |
180 |
171 179
|
eqtrd |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑀 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑁 𝑦 ) ) = ( 1 𝑁 𝑠 ) ) |
181 |
|
ovex |
⊢ ( 1 𝑁 𝑠 ) ∈ V |
182 |
180 4 181
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑃 𝑠 ) = ( 1 𝑁 𝑠 ) ) |
183 |
131 111 182
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑃 𝑠 ) = ( 1 𝑁 𝑠 ) ) |
184 |
9 12
|
pco1 |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
185 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
186 |
165 183 185
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝑃 𝑠 ) = ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ‘ 1 ) ) |
187 |
13 21 89 127 146 163 186
|
isphtpy2d |
⊢ ( 𝜑 → 𝑃 ∈ ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ) |