Step |
Hyp |
Ref |
Expression |
1 |
|
pi1xfr.p |
|- P = ( J pi1 ( F ` 0 ) ) |
2 |
|
pi1xfr.q |
|- Q = ( J pi1 ( F ` 1 ) ) |
3 |
|
pi1xfr.b |
|- B = ( Base ` P ) |
4 |
|
pi1xfr.g |
|- G = ran ( g e. U. B |-> <. [ g ] ( ~=ph ` J ) , [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) >. ) |
5 |
|
pi1xfr.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
6 |
|
pi1xfr.f |
|- ( ph -> F e. ( II Cn J ) ) |
7 |
|
pi1xfrval.i |
|- ( ph -> I e. ( II Cn J ) ) |
8 |
|
pi1xfrval.1 |
|- ( ph -> ( F ` 1 ) = ( I ` 0 ) ) |
9 |
|
pi1xfrval.2 |
|- ( ph -> ( I ` 1 ) = ( F ` 0 ) ) |
10 |
5
|
adantr |
|- ( ( ph /\ g e. U. B ) -> J e. ( TopOn ` X ) ) |
11 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
12 |
|
cnf2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ J e. ( TopOn ` X ) /\ F e. ( II Cn J ) ) -> F : ( 0 [,] 1 ) --> X ) |
13 |
11 5 6 12
|
mp3an2i |
|- ( ph -> F : ( 0 [,] 1 ) --> X ) |
14 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
15 |
|
ffvelrn |
|- ( ( F : ( 0 [,] 1 ) --> X /\ 0 e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. X ) |
16 |
13 14 15
|
sylancl |
|- ( ph -> ( F ` 0 ) e. X ) |
17 |
16
|
adantr |
|- ( ( ph /\ g e. U. B ) -> ( F ` 0 ) e. X ) |
18 |
3
|
a1i |
|- ( ph -> B = ( Base ` P ) ) |
19 |
1 5 16 18
|
pi1eluni |
|- ( ph -> ( g e. U. B <-> ( g e. ( II Cn J ) /\ ( g ` 0 ) = ( F ` 0 ) /\ ( g ` 1 ) = ( F ` 0 ) ) ) ) |
20 |
19
|
biimpa |
|- ( ( ph /\ g e. U. B ) -> ( g e. ( II Cn J ) /\ ( g ` 0 ) = ( F ` 0 ) /\ ( g ` 1 ) = ( F ` 0 ) ) ) |
21 |
20
|
simp1d |
|- ( ( ph /\ g e. U. B ) -> g e. ( II Cn J ) ) |
22 |
20
|
simp2d |
|- ( ( ph /\ g e. U. B ) -> ( g ` 0 ) = ( F ` 0 ) ) |
23 |
20
|
simp3d |
|- ( ( ph /\ g e. U. B ) -> ( g ` 1 ) = ( F ` 0 ) ) |
24 |
1 3 10 17 21 22 23
|
elpi1i |
|- ( ( ph /\ g e. U. B ) -> [ g ] ( ~=ph ` J ) e. B ) |
25 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
26 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
27 |
|
ffvelrn |
|- ( ( F : ( 0 [,] 1 ) --> X /\ 1 e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. X ) |
28 |
13 26 27
|
sylancl |
|- ( ph -> ( F ` 1 ) e. X ) |
29 |
28
|
adantr |
|- ( ( ph /\ g e. U. B ) -> ( F ` 1 ) e. X ) |
30 |
7
|
adantr |
|- ( ( ph /\ g e. U. B ) -> I e. ( II Cn J ) ) |
31 |
6
|
adantr |
|- ( ( ph /\ g e. U. B ) -> F e. ( II Cn J ) ) |
32 |
21 31 23
|
pcocn |
|- ( ( ph /\ g e. U. B ) -> ( g ( *p ` J ) F ) e. ( II Cn J ) ) |
33 |
21 31
|
pco0 |
|- ( ( ph /\ g e. U. B ) -> ( ( g ( *p ` J ) F ) ` 0 ) = ( g ` 0 ) ) |
34 |
9
|
adantr |
|- ( ( ph /\ g e. U. B ) -> ( I ` 1 ) = ( F ` 0 ) ) |
35 |
22 33 34
|
3eqtr4rd |
|- ( ( ph /\ g e. U. B ) -> ( I ` 1 ) = ( ( g ( *p ` J ) F ) ` 0 ) ) |
36 |
30 32 35
|
pcocn |
|- ( ( ph /\ g e. U. B ) -> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) e. ( II Cn J ) ) |
37 |
30 32
|
pco0 |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 0 ) = ( I ` 0 ) ) |
38 |
8
|
adantr |
|- ( ( ph /\ g e. U. B ) -> ( F ` 1 ) = ( I ` 0 ) ) |
39 |
37 38
|
eqtr4d |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 0 ) = ( F ` 1 ) ) |
40 |
30 32
|
pco1 |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 1 ) = ( ( g ( *p ` J ) F ) ` 1 ) ) |
41 |
21 31
|
pco1 |
|- ( ( ph /\ g e. U. B ) -> ( ( g ( *p ` J ) F ) ` 1 ) = ( F ` 1 ) ) |
42 |
40 41
|
eqtrd |
|- ( ( ph /\ g e. U. B ) -> ( ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ` 1 ) = ( F ` 1 ) ) |
43 |
2 25 10 29 36 39 42
|
elpi1i |
|- ( ( ph /\ g e. U. B ) -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) e. ( Base ` Q ) ) |
44 |
|
eceq1 |
|- ( g = h -> [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) |
45 |
|
oveq1 |
|- ( g = h -> ( g ( *p ` J ) F ) = ( h ( *p ` J ) F ) ) |
46 |
45
|
oveq2d |
|- ( g = h -> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) = ( I ( *p ` J ) ( h ( *p ` J ) F ) ) ) |
47 |
46
|
eceq1d |
|- ( g = h -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) = [ ( I ( *p ` J ) ( h ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |
48 |
|
phtpcer |
|- ( ~=ph ` J ) Er ( II Cn J ) |
49 |
48
|
a1i |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( ~=ph ` J ) Er ( II Cn J ) ) |
50 |
22
|
3ad2antr1 |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( g ` 0 ) = ( F ` 0 ) ) |
51 |
21
|
3ad2antr1 |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> g e. ( II Cn J ) ) |
52 |
6
|
adantr |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> F e. ( II Cn J ) ) |
53 |
51 52
|
pco0 |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( ( g ( *p ` J ) F ) ` 0 ) = ( g ` 0 ) ) |
54 |
9
|
adantr |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( I ` 1 ) = ( F ` 0 ) ) |
55 |
50 53 54
|
3eqtr4rd |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( I ` 1 ) = ( ( g ( *p ` J ) F ) ` 0 ) ) |
56 |
7
|
adantr |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> I e. ( II Cn J ) ) |
57 |
49 56
|
erref |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> I ( ~=ph ` J ) I ) |
58 |
23
|
3ad2antr1 |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( g ` 1 ) = ( F ` 0 ) ) |
59 |
|
simpr3 |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) |
60 |
49 51
|
erth |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( g ( ~=ph ` J ) h <-> [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) |
61 |
59 60
|
mpbird |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> g ( ~=ph ` J ) h ) |
62 |
49 52
|
erref |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> F ( ~=ph ` J ) F ) |
63 |
58 61 62
|
pcohtpy |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( g ( *p ` J ) F ) ( ~=ph ` J ) ( h ( *p ` J ) F ) ) |
64 |
55 57 63
|
pcohtpy |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ( ~=ph ` J ) ( I ( *p ` J ) ( h ( *p ` J ) F ) ) ) |
65 |
49 64
|
erthi |
|- ( ( ph /\ ( g e. U. B /\ h e. U. B /\ [ g ] ( ~=ph ` J ) = [ h ] ( ~=ph ` J ) ) ) -> [ ( I ( *p ` J ) ( g ( *p ` J ) F ) ) ] ( ~=ph ` J ) = [ ( I ( *p ` J ) ( h ( *p ` J ) F ) ) ] ( ~=ph ` J ) ) |
66 |
4 24 43 44 47 65
|
fliftfund |
|- ( ph -> Fun G ) |
67 |
4 24 43
|
fliftf |
|- ( ph -> ( Fun G <-> G : ran ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) --> ( Base ` Q ) ) ) |
68 |
66 67
|
mpbid |
|- ( ph -> G : ran ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) --> ( Base ` Q ) ) |
69 |
1 5 16 18
|
pi1bas2 |
|- ( ph -> B = ( U. B /. ( ~=ph ` J ) ) ) |
70 |
|
df-qs |
|- ( U. B /. ( ~=ph ` J ) ) = { s | E. g e. U. B s = [ g ] ( ~=ph ` J ) } |
71 |
|
eqid |
|- ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) = ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) |
72 |
71
|
rnmpt |
|- ran ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) = { s | E. g e. U. B s = [ g ] ( ~=ph ` J ) } |
73 |
70 72
|
eqtr4i |
|- ( U. B /. ( ~=ph ` J ) ) = ran ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) |
74 |
69 73
|
eqtrdi |
|- ( ph -> B = ran ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) ) |
75 |
74
|
feq2d |
|- ( ph -> ( G : B --> ( Base ` Q ) <-> G : ran ( g e. U. B |-> [ g ] ( ~=ph ` J ) ) --> ( Base ` Q ) ) ) |
76 |
68 75
|
mpbird |
|- ( ph -> G : B --> ( Base ` Q ) ) |