| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
| 2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
| 3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
| 4 |
|
fliftfun.4 |
|- ( x = y -> A = C ) |
| 5 |
|
fliftfun.5 |
|- ( x = y -> B = D ) |
| 6 |
|
fliftfund.6 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ A = C ) ) -> B = D ) |
| 7 |
6
|
3exp2 |
|- ( ph -> ( x e. X -> ( y e. X -> ( A = C -> B = D ) ) ) ) |
| 8 |
7
|
imp32 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( A = C -> B = D ) ) |
| 9 |
8
|
ralrimivva |
|- ( ph -> A. x e. X A. y e. X ( A = C -> B = D ) ) |
| 10 |
1 2 3 4 5
|
fliftfun |
|- ( ph -> ( Fun F <-> A. x e. X A. y e. X ( A = C -> B = D ) ) ) |
| 11 |
9 10
|
mpbird |
|- ( ph -> Fun F ) |