Metamath Proof Explorer


Theorem fliftfund

Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
fliftfun.4 x=yA=C
fliftfun.5 x=yB=D
fliftfund.6 φxXyXA=CB=D
Assertion fliftfund φFunF

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 fliftfun.4 x=yA=C
5 fliftfun.5 x=yB=D
6 fliftfund.6 φxXyXA=CB=D
7 6 3exp2 φxXyXA=CB=D
8 7 imp32 φxXyXA=CB=D
9 8 ralrimivva φxXyXA=CB=D
10 1 2 3 4 5 fliftfun φFunFxXyXA=CB=D
11 9 10 mpbird φFunF