Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flift.1 | |
|
flift.2 | |
||
flift.3 | |
||
Assertion | fliftfuns | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | |
|
2 | flift.2 | |
|
3 | flift.3 | |
|
4 | nfcv | |
|
5 | nfcsb1v | |
|
6 | nfcsb1v | |
|
7 | 5 6 | nfop | |
8 | csbeq1a | |
|
9 | csbeq1a | |
|
10 | 8 9 | opeq12d | |
11 | 4 7 10 | cbvmpt | |
12 | 11 | rneqi | |
13 | 1 12 | eqtri | |
14 | 2 | ralrimiva | |
15 | 5 | nfel1 | |
16 | 8 | eleq1d | |
17 | 15 16 | rspc | |
18 | 14 17 | mpan9 | |
19 | 3 | ralrimiva | |
20 | 6 | nfel1 | |
21 | 9 | eleq1d | |
22 | 20 21 | rspc | |
23 | 19 22 | mpan9 | |
24 | csbeq1 | |
|
25 | csbeq1 | |
|
26 | 13 18 23 24 25 | fliftfun | |