Metamath Proof Explorer


Theorem fliftfuns

Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
Assertion fliftfuns φFunFyXzXy/xA=z/xAy/xB=z/xB

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 nfcv _yAB
5 nfcsb1v _xy/xA
6 nfcsb1v _xy/xB
7 5 6 nfop _xy/xAy/xB
8 csbeq1a x=yA=y/xA
9 csbeq1a x=yB=y/xB
10 8 9 opeq12d x=yAB=y/xAy/xB
11 4 7 10 cbvmpt xXAB=yXy/xAy/xB
12 11 rneqi ranxXAB=ranyXy/xAy/xB
13 1 12 eqtri F=ranyXy/xAy/xB
14 2 ralrimiva φxXAR
15 5 nfel1 xy/xAR
16 8 eleq1d x=yARy/xAR
17 15 16 rspc yXxXARy/xAR
18 14 17 mpan9 φyXy/xAR
19 3 ralrimiva φxXBS
20 6 nfel1 xy/xBS
21 9 eleq1d x=yBSy/xBS
22 20 21 rspc yXxXBSy/xBS
23 19 22 mpan9 φyXy/xBS
24 csbeq1 y=zy/xA=z/xA
25 csbeq1 y=zy/xB=z/xB
26 13 18 23 24 25 fliftfun φFunFyXzXy/xA=z/xAy/xB=z/xB