| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) |
| 2 |
|
flift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) |
| 3 |
|
flift.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 𝐴 , 𝐵 〉 |
| 5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
| 6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 7 |
5 6
|
nfop |
⊢ Ⅎ 𝑥 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 |
| 8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 10 |
8 9
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 𝐴 , 𝐵 〉 = 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 11 |
4 7 10
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 12 |
11
|
rneqi |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ran ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 13 |
1 12
|
eqtri |
⊢ 𝐹 = ran ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 14 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 ) |
| 15 |
5
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 |
| 16 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑅 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) ) |
| 17 |
15 16
|
rspc |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) ) |
| 18 |
14 17
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) |
| 19 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 ) |
| 20 |
6
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 |
| 21 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑆 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 22 |
20 21
|
rspc |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 23 |
19 22
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) |
| 24 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 25 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 26 |
13 18 23 24 25
|
fliftfun |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |