Step |
Hyp |
Ref |
Expression |
1 |
|
elpi1.g |
|- G = ( J pi1 Y ) |
2 |
|
elpi1.b |
|- B = ( Base ` G ) |
3 |
|
elpi1.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
4 |
|
elpi1.2 |
|- ( ph -> Y e. X ) |
5 |
|
elpi1i.3 |
|- ( ph -> F e. ( II Cn J ) ) |
6 |
|
elpi1i.4 |
|- ( ph -> ( F ` 0 ) = Y ) |
7 |
|
elpi1i.5 |
|- ( ph -> ( F ` 1 ) = Y ) |
8 |
|
eceq1 |
|- ( f = F -> [ f ] ( ~=ph ` J ) = [ F ] ( ~=ph ` J ) ) |
9 |
8
|
eqcomd |
|- ( f = F -> [ F ] ( ~=ph ` J ) = [ f ] ( ~=ph ` J ) ) |
10 |
9
|
biantrud |
|- ( f = F -> ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) <-> ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ [ F ] ( ~=ph ` J ) = [ f ] ( ~=ph ` J ) ) ) ) |
11 |
|
fveq1 |
|- ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) |
12 |
11
|
eqeq1d |
|- ( f = F -> ( ( f ` 0 ) = Y <-> ( F ` 0 ) = Y ) ) |
13 |
|
fveq1 |
|- ( f = F -> ( f ` 1 ) = ( F ` 1 ) ) |
14 |
13
|
eqeq1d |
|- ( f = F -> ( ( f ` 1 ) = Y <-> ( F ` 1 ) = Y ) ) |
15 |
12 14
|
anbi12d |
|- ( f = F -> ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) <-> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |
16 |
10 15
|
bitr3d |
|- ( f = F -> ( ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ [ F ] ( ~=ph ` J ) = [ f ] ( ~=ph ` J ) ) <-> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |
17 |
16
|
rspcev |
|- ( ( F e. ( II Cn J ) /\ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) -> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ [ F ] ( ~=ph ` J ) = [ f ] ( ~=ph ` J ) ) ) |
18 |
5 6 7 17
|
syl12anc |
|- ( ph -> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ [ F ] ( ~=ph ` J ) = [ f ] ( ~=ph ` J ) ) ) |
19 |
1 2 3 4
|
elpi1 |
|- ( ph -> ( [ F ] ( ~=ph ` J ) e. B <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ [ F ] ( ~=ph ` J ) = [ f ] ( ~=ph ` J ) ) ) ) |
20 |
18 19
|
mpbird |
|- ( ph -> [ F ] ( ~=ph ` J ) e. B ) |