Metamath Proof Explorer


Theorem elpi1i

Description: The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses elpi1.g G = J π 1 Y
elpi1.b B = Base G
elpi1.1 φ J TopOn X
elpi1.2 φ Y X
elpi1i.3 φ F II Cn J
elpi1i.4 φ F 0 = Y
elpi1i.5 φ F 1 = Y
Assertion elpi1i φ F ph J B

Proof

Step Hyp Ref Expression
1 elpi1.g G = J π 1 Y
2 elpi1.b B = Base G
3 elpi1.1 φ J TopOn X
4 elpi1.2 φ Y X
5 elpi1i.3 φ F II Cn J
6 elpi1i.4 φ F 0 = Y
7 elpi1i.5 φ F 1 = Y
8 eceq1 f = F f ph J = F ph J
9 8 eqcomd f = F F ph J = f ph J
10 9 biantrud f = F f 0 = Y f 1 = Y f 0 = Y f 1 = Y F ph J = f ph J
11 fveq1 f = F f 0 = F 0
12 11 eqeq1d f = F f 0 = Y F 0 = Y
13 fveq1 f = F f 1 = F 1
14 13 eqeq1d f = F f 1 = Y F 1 = Y
15 12 14 anbi12d f = F f 0 = Y f 1 = Y F 0 = Y F 1 = Y
16 10 15 bitr3d f = F f 0 = Y f 1 = Y F ph J = f ph J F 0 = Y F 1 = Y
17 16 rspcev F II Cn J F 0 = Y F 1 = Y f II Cn J f 0 = Y f 1 = Y F ph J = f ph J
18 5 6 7 17 syl12anc φ f II Cn J f 0 = Y f 1 = Y F ph J = f ph J
19 1 2 3 4 elpi1 φ F ph J B f II Cn J f 0 = Y f 1 = Y F ph J = f ph J
20 18 19 mpbird φ F ph J B