Step |
Hyp |
Ref |
Expression |
1 |
|
elpi1.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
2 |
|
elpi1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
elpi1.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
elpi1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
5 |
|
elpi1i.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
6 |
|
elpi1i.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝑌 ) |
7 |
|
elpi1i.5 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑌 ) |
8 |
|
eceq1 |
⊢ ( 𝑓 = 𝐹 → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) = [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) |
9 |
8
|
eqcomd |
⊢ ( 𝑓 = 𝐹 → [ 𝐹 ] ( ≃ph ‘ 𝐽 ) = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) |
10 |
9
|
biantrud |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ↔ ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 0 ) = 𝑌 ↔ ( 𝐹 ‘ 0 ) = 𝑌 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = 𝑌 ) ) |
15 |
12 14
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ↔ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |
16 |
10 15
|
bitr3d |
⊢ ( 𝑓 = 𝐹 → ( ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ↔ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) |
18 |
5 6 7 17
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) |
19 |
1 2 3 4
|
elpi1 |
⊢ ( 𝜑 → ( [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ∈ 𝐵 ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
20 |
18 19
|
mpbird |
⊢ ( 𝜑 → [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ∈ 𝐵 ) |