| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpi1.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
| 2 |
|
elpi1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
elpi1.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
elpi1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 5 |
|
pi1addf.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) = ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
| 8 |
|
fvexd |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 9 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐽 Ω1 𝑌 ) ∈ V ) |
| 10 |
|
eqid |
⊢ ( 𝐽 Ω1 𝑌 ) = ( 𝐽 Ω1 𝑌 ) |
| 11 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 12 |
1 3 4 10 11 7
|
pi1blem |
⊢ ( 𝜑 → ( ( ( ≃ph ‘ 𝐽 ) “ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ⊆ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ∧ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ⊆ ( II Cn 𝐽 ) ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) “ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ⊆ ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
| 14 |
6 7 8 9 13
|
qusin |
⊢ ( 𝜑 → ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) = ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) ) ) |
| 15 |
1 3 4 10
|
pi1val |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐽 Ω1 𝑌 ) /s ( ≃ph ‘ 𝐽 ) ) ) |
| 16 |
1 3 4 10 11 7
|
pi1buni |
⊢ ( 𝜑 → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
| 17 |
16
|
sqxpeqd |
⊢ ( 𝜑 → ( ∪ 𝐵 × ∪ 𝐵 ) = ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) |
| 18 |
17
|
ineq2d |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( ( ≃ph ‘ 𝐽 ) ∩ ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) = ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) × ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) ) ) ) |
| 20 |
14 15 19
|
3eqtr4d |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐽 Ω1 𝑌 ) /s ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) |
| 21 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 23 |
12
|
simprd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ⊆ ( II Cn 𝐽 ) ) |
| 24 |
16 23
|
eqsstrd |
⊢ ( 𝜑 → ∪ 𝐵 ⊆ ( II Cn 𝐽 ) ) |
| 25 |
22 24
|
erinxp |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) Er ∪ 𝐵 ) |
| 26 |
|
eqid |
⊢ ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) = ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) |
| 27 |
|
eqid |
⊢ ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) = ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) |
| 28 |
1 3 4 11 26 10 27
|
pi1cpbl |
⊢ ( 𝜑 → ( ( 𝑎 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑐 ∧ 𝑏 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑑 ) → ( 𝑎 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑏 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ) ) |
| 29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝑌 ∈ 𝑋 ) |
| 31 |
10 29 30
|
om1plusg |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ( *𝑝 ‘ 𝐽 ) = ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
| 32 |
31
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) = ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ) |
| 33 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
| 34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝑐 ∈ ∪ 𝐵 ) |
| 35 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → 𝑑 ∈ ∪ 𝐵 ) |
| 36 |
10 29 30 33 34 35
|
om1addcl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ( 𝑐 ( *𝑝 ‘ 𝐽 ) 𝑑 ) ∈ ∪ 𝐵 ) |
| 37 |
32 36
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ∪ 𝐵 ∧ 𝑑 ∈ ∪ 𝐵 ) ) → ( 𝑐 ( +g ‘ ( 𝐽 Ω1 𝑌 ) ) 𝑑 ) ∈ ∪ 𝐵 ) |
| 38 |
20 16 25 9 28 37 27 5
|
qusaddf |
⊢ ( 𝜑 → + : ( ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) × ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) ⟶ ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) |
| 39 |
1 3 4 11 26
|
pi1bas3 |
⊢ ( 𝜑 → 𝐵 = ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) |
| 40 |
39
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) × ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) ) |
| 41 |
40
|
feq2d |
⊢ ( 𝜑 → ( + : ( 𝐵 × 𝐵 ) ⟶ ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ↔ + : ( ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) × ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) ⟶ ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) ) |
| 42 |
38 41
|
mpbird |
⊢ ( 𝜑 → + : ( 𝐵 × 𝐵 ) ⟶ ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) |
| 43 |
39
|
feq3d |
⊢ ( 𝜑 → ( + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ + : ( 𝐵 × 𝐵 ) ⟶ ( ∪ 𝐵 / ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ) ) ) |
| 44 |
42 43
|
mpbird |
⊢ ( 𝜑 → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |