| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1val.g | ⊢ 𝐺  =  ( 𝐽  π1  𝑌 ) | 
						
							| 2 |  | pi1val.1 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | pi1val.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 4 |  | pi1val.o | ⊢ 𝑂  =  ( 𝐽  Ω1  𝑌 ) | 
						
							| 5 |  | pi1bas.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 6 |  | pi1bas.k | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ 𝑂 ) ) | 
						
							| 7 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 8 | 7 | elima | ⊢ ( 𝑥  ∈  ( (  ≃ph ‘ 𝐽 )  “  𝐾 )  ↔  ∃ 𝑦  ∈  𝐾 𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 )  →  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) | 
						
							| 10 |  | isphtpc | ⊢ ( 𝑦 (  ≃ph ‘ 𝐽 ) 𝑥  ↔  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 )  ≠  ∅ ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( ( 𝜑  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 )  →  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 )  ≠  ∅ ) ) | 
						
							| 12 | 11 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 )  ≠  ∅ ) ) | 
						
							| 13 | 12 | simp2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  𝑥  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 14 |  | phtpc01 | ⊢ ( 𝑦 (  ≃ph ‘ 𝐽 ) 𝑥  →  ( ( 𝑦 ‘ 0 )  =  ( 𝑥 ‘ 0 )  ∧  ( 𝑦 ‘ 1 )  =  ( 𝑥 ‘ 1 ) ) ) | 
						
							| 15 | 14 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( ( 𝑦 ‘ 0 )  =  ( 𝑥 ‘ 0 )  ∧  ( 𝑦 ‘ 1 )  =  ( 𝑥 ‘ 1 ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑦 ‘ 0 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 17 | 4 2 3 6 | om1elbas | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐾  ↔  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ‘ 0 )  =  𝑌  ∧  ( 𝑦 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 18 | 17 | biimpa | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐾 )  →  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ‘ 0 )  =  𝑌  ∧  ( 𝑦 ‘ 1 )  =  𝑌 ) ) | 
						
							| 19 | 18 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑦  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑦 ‘ 0 )  =  𝑌  ∧  ( 𝑦 ‘ 1 )  =  𝑌 ) ) | 
						
							| 20 | 19 | simp2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑦 ‘ 0 )  =  𝑌 ) | 
						
							| 21 | 16 20 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑥 ‘ 0 )  =  𝑌 ) | 
						
							| 22 | 15 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑦 ‘ 1 )  =  ( 𝑥 ‘ 1 ) ) | 
						
							| 23 | 19 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑦 ‘ 1 )  =  𝑌 ) | 
						
							| 24 | 22 23 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑥 ‘ 1 )  =  𝑌 ) | 
						
							| 25 | 4 2 3 6 | om1elbas | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐾  ↔  ( 𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑥 ‘ 0 )  =  𝑌  ∧  ( 𝑥 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  ( 𝑥  ∈  𝐾  ↔  ( 𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑥 ‘ 0 )  =  𝑌  ∧  ( 𝑥 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 27 | 13 21 24 26 | mpbir3and | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐾  ∧  𝑦 (  ≃ph ‘ 𝐽 ) 𝑥 ) )  →  𝑥  ∈  𝐾 ) | 
						
							| 28 | 27 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝐾 𝑦 (  ≃ph ‘ 𝐽 ) 𝑥  →  𝑥  ∈  𝐾 ) ) | 
						
							| 29 | 8 28 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( (  ≃ph ‘ 𝐽 )  “  𝐾 )  →  𝑥  ∈  𝐾 ) ) | 
						
							| 30 | 29 | ssrdv | ⊢ ( 𝜑  →  ( (  ≃ph ‘ 𝐽 )  “  𝐾 )  ⊆  𝐾 ) | 
						
							| 31 |  | simp1 | ⊢ ( ( 𝑥  ∈  ( II  Cn  𝐽 )  ∧  ( 𝑥 ‘ 0 )  =  𝑌  ∧  ( 𝑥 ‘ 1 )  =  𝑌 )  →  𝑥  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 32 | 25 31 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐾  →  𝑥  ∈  ( II  Cn  𝐽 ) ) ) | 
						
							| 33 | 32 | ssrdv | ⊢ ( 𝜑  →  𝐾  ⊆  ( II  Cn  𝐽 ) ) | 
						
							| 34 | 30 33 | jca | ⊢ ( 𝜑  →  ( ( (  ≃ph ‘ 𝐽 )  “  𝐾 )  ⊆  𝐾  ∧  𝐾  ⊆  ( II  Cn  𝐽 ) ) ) |