Step |
Hyp |
Ref |
Expression |
1 |
|
pi1val.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
2 |
|
pi1val.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
pi1val.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
4 |
|
pi1val.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
5 |
|
pi1bas.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
6 |
|
pi1bas.k |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑂 ) ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
7
|
elima |
⊢ ( 𝑥 ∈ ( ( ≃ph ‘ 𝐽 ) “ 𝐾 ) ↔ ∃ 𝑦 ∈ 𝐾 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) → 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) |
10 |
|
isphtpc |
⊢ ( 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ↔ ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 ) ≠ ∅ ) ) |
11 |
9 10
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 ) ≠ ∅ ) ) |
12 |
11
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 ) ≠ ∅ ) ) |
13 |
12
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → 𝑥 ∈ ( II Cn 𝐽 ) ) |
14 |
|
phtpc01 |
⊢ ( 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 → ( ( 𝑦 ‘ 0 ) = ( 𝑥 ‘ 0 ) ∧ ( 𝑦 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) ) |
15 |
14
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( ( 𝑦 ‘ 0 ) = ( 𝑥 ‘ 0 ) ∧ ( 𝑦 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) ) |
16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 0 ) = ( 𝑥 ‘ 0 ) ) |
17 |
4 2 3 6
|
om1elbas |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐾 ↔ ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) ) ) |
18 |
17
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) ) |
19 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) ) |
20 |
19
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 0 ) = 𝑌 ) |
21 |
16 20
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑥 ‘ 0 ) = 𝑌 ) |
22 |
15
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) |
23 |
19
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 1 ) = 𝑌 ) |
24 |
22 23
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑥 ‘ 1 ) = 𝑌 ) |
25 |
4 2 3 6
|
om1elbas |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↔ ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → ( 𝑥 ∈ 𝐾 ↔ ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) ) ) |
27 |
13 21 24 26
|
mpbir3and |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 ) ) → 𝑥 ∈ 𝐾 ) |
28 |
27
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐾 𝑦 ( ≃ph ‘ 𝐽 ) 𝑥 → 𝑥 ∈ 𝐾 ) ) |
29 |
8 28
|
syl5bi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( ≃ph ‘ 𝐽 ) “ 𝐾 ) → 𝑥 ∈ 𝐾 ) ) |
30 |
29
|
ssrdv |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) “ 𝐾 ) ⊆ 𝐾 ) |
31 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) → 𝑥 ∈ ( II Cn 𝐽 ) ) |
32 |
25 31
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 → 𝑥 ∈ ( II Cn 𝐽 ) ) ) |
33 |
32
|
ssrdv |
⊢ ( 𝜑 → 𝐾 ⊆ ( II Cn 𝐽 ) ) |
34 |
30 33
|
jca |
⊢ ( 𝜑 → ( ( ( ≃ph ‘ 𝐽 ) “ 𝐾 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ( II Cn 𝐽 ) ) ) |