Metamath Proof Explorer


Theorem pi1blem

Description: Lemma for pi1buni . (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g 𝐺 = ( 𝐽 π1 𝑌 )
pi1val.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
pi1val.2 ( 𝜑𝑌𝑋 )
pi1val.o 𝑂 = ( 𝐽 Ω1 𝑌 )
pi1bas.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
pi1bas.k ( 𝜑𝐾 = ( Base ‘ 𝑂 ) )
Assertion pi1blem ( 𝜑 → ( ( ( ≃ph𝐽 ) “ 𝐾 ) ⊆ 𝐾𝐾 ⊆ ( II Cn 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 pi1val.g 𝐺 = ( 𝐽 π1 𝑌 )
2 pi1val.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 pi1val.2 ( 𝜑𝑌𝑋 )
4 pi1val.o 𝑂 = ( 𝐽 Ω1 𝑌 )
5 pi1bas.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
6 pi1bas.k ( 𝜑𝐾 = ( Base ‘ 𝑂 ) )
7 vex 𝑥 ∈ V
8 7 elima ( 𝑥 ∈ ( ( ≃ph𝐽 ) “ 𝐾 ) ↔ ∃ 𝑦𝐾 𝑦 ( ≃ph𝐽 ) 𝑥 )
9 simpr ( ( 𝜑𝑦 ( ≃ph𝐽 ) 𝑥 ) → 𝑦 ( ≃ph𝐽 ) 𝑥 )
10 isphtpc ( 𝑦 ( ≃ph𝐽 ) 𝑥 ↔ ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 ) ≠ ∅ ) )
11 9 10 sylib ( ( 𝜑𝑦 ( ≃ph𝐽 ) 𝑥 ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 ) ≠ ∅ ) )
12 11 adantrl ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ( PHtpy ‘ 𝐽 ) 𝑥 ) ≠ ∅ ) )
13 12 simp2d ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → 𝑥 ∈ ( II Cn 𝐽 ) )
14 phtpc01 ( 𝑦 ( ≃ph𝐽 ) 𝑥 → ( ( 𝑦 ‘ 0 ) = ( 𝑥 ‘ 0 ) ∧ ( 𝑦 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) )
15 14 ad2antll ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( ( 𝑦 ‘ 0 ) = ( 𝑥 ‘ 0 ) ∧ ( 𝑦 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) )
16 15 simpld ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 0 ) = ( 𝑥 ‘ 0 ) )
17 4 2 3 6 om1elbas ( 𝜑 → ( 𝑦𝐾 ↔ ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) ) )
18 17 biimpa ( ( 𝜑𝑦𝐾 ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) )
19 18 adantrr ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑦 ∈ ( II Cn 𝐽 ) ∧ ( 𝑦 ‘ 0 ) = 𝑌 ∧ ( 𝑦 ‘ 1 ) = 𝑌 ) )
20 19 simp2d ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 0 ) = 𝑌 )
21 16 20 eqtr3d ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑥 ‘ 0 ) = 𝑌 )
22 15 simprd ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 1 ) = ( 𝑥 ‘ 1 ) )
23 19 simp3d ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑦 ‘ 1 ) = 𝑌 )
24 22 23 eqtr3d ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑥 ‘ 1 ) = 𝑌 )
25 4 2 3 6 om1elbas ( 𝜑 → ( 𝑥𝐾 ↔ ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) ) )
26 25 adantr ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → ( 𝑥𝐾 ↔ ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) ) )
27 13 21 24 26 mpbir3and ( ( 𝜑 ∧ ( 𝑦𝐾𝑦 ( ≃ph𝐽 ) 𝑥 ) ) → 𝑥𝐾 )
28 27 rexlimdvaa ( 𝜑 → ( ∃ 𝑦𝐾 𝑦 ( ≃ph𝐽 ) 𝑥𝑥𝐾 ) )
29 8 28 syl5bi ( 𝜑 → ( 𝑥 ∈ ( ( ≃ph𝐽 ) “ 𝐾 ) → 𝑥𝐾 ) )
30 29 ssrdv ( 𝜑 → ( ( ≃ph𝐽 ) “ 𝐾 ) ⊆ 𝐾 )
31 simp1 ( ( 𝑥 ∈ ( II Cn 𝐽 ) ∧ ( 𝑥 ‘ 0 ) = 𝑌 ∧ ( 𝑥 ‘ 1 ) = 𝑌 ) → 𝑥 ∈ ( II Cn 𝐽 ) )
32 25 31 syl6bi ( 𝜑 → ( 𝑥𝐾𝑥 ∈ ( II Cn 𝐽 ) ) )
33 32 ssrdv ( 𝜑𝐾 ⊆ ( II Cn 𝐽 ) )
34 30 33 jca ( 𝜑 → ( ( ( ≃ph𝐽 ) “ 𝐾 ) ⊆ 𝐾𝐾 ⊆ ( II Cn 𝐽 ) ) )