Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
2 |
|
om1bas.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
om1bas.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
4 |
|
om1bas.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑂 ) ) |
5 |
1 2 3 4
|
om1bas |
⊢ ( 𝜑 → 𝐵 = { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ) |
6 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 ∈ { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ) ) |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 0 ) = 𝑌 ↔ ( 𝐹 ‘ 0 ) = 𝑌 ) ) |
9 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = 𝑌 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ↔ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |
13 |
|
3anass |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |
14 |
12 13
|
bitr4i |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) |
15 |
6 14
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐵 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |