| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om1bas.o | ⊢ 𝑂  =  ( 𝐽  Ω1  𝑌 ) | 
						
							| 2 |  | om1bas.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | om1bas.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 4 |  | om1bas.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑂 ) ) | 
						
							| 5 | 1 2 3 4 | om1bas | ⊢ ( 𝜑  →  𝐵  =  { 𝑓  ∈  ( II  Cn  𝐽 )  ∣  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) } ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝐵  ↔  𝐹  ∈  { 𝑓  ∈  ( II  Cn  𝐽 )  ∣  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) } ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 0 )  =  𝑌  ↔  ( 𝐹 ‘ 0 )  =  𝑌 ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 1 )  =  𝑌  ↔  ( 𝐹 ‘ 1 )  =  𝑌 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 )  ↔  ( ( 𝐹 ‘ 0 )  =  𝑌  ∧  ( 𝐹 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( II  Cn  𝐽 )  ∣  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) }  ↔  ( 𝐹  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝐹 ‘ 0 )  =  𝑌  ∧  ( 𝐹 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 13 |  | 3anass | ⊢ ( ( 𝐹  ∈  ( II  Cn  𝐽 )  ∧  ( 𝐹 ‘ 0 )  =  𝑌  ∧  ( 𝐹 ‘ 1 )  =  𝑌 )  ↔  ( 𝐹  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝐹 ‘ 0 )  =  𝑌  ∧  ( 𝐹 ‘ 1 )  =  𝑌 ) ) ) | 
						
							| 14 | 12 13 | bitr4i | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( II  Cn  𝐽 )  ∣  ( ( 𝑓 ‘ 0 )  =  𝑌  ∧  ( 𝑓 ‘ 1 )  =  𝑌 ) }  ↔  ( 𝐹  ∈  ( II  Cn  𝐽 )  ∧  ( 𝐹 ‘ 0 )  =  𝑌  ∧  ( 𝐹 ‘ 1 )  =  𝑌 ) ) | 
						
							| 15 | 6 14 | bitrdi | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝐵  ↔  ( 𝐹  ∈  ( II  Cn  𝐽 )  ∧  ( 𝐹 ‘ 0 )  =  𝑌  ∧  ( 𝐹 ‘ 1 )  =  𝑌 ) ) ) |