Metamath Proof Explorer


Theorem om1elbas

Description: Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o O = J Ω 1 Y
om1bas.j φ J TopOn X
om1bas.y φ Y X
om1bas.b φ B = Base O
Assertion om1elbas φ F B F II Cn J F 0 = Y F 1 = Y

Proof

Step Hyp Ref Expression
1 om1bas.o O = J Ω 1 Y
2 om1bas.j φ J TopOn X
3 om1bas.y φ Y X
4 om1bas.b φ B = Base O
5 1 2 3 4 om1bas φ B = f II Cn J | f 0 = Y f 1 = Y
6 5 eleq2d φ F B F f II Cn J | f 0 = Y f 1 = Y
7 fveq1 f = F f 0 = F 0
8 7 eqeq1d f = F f 0 = Y F 0 = Y
9 fveq1 f = F f 1 = F 1
10 9 eqeq1d f = F f 1 = Y F 1 = Y
11 8 10 anbi12d f = F f 0 = Y f 1 = Y F 0 = Y F 1 = Y
12 11 elrab F f II Cn J | f 0 = Y f 1 = Y F II Cn J F 0 = Y F 1 = Y
13 3anass F II Cn J F 0 = Y F 1 = Y F II Cn J F 0 = Y F 1 = Y
14 12 13 bitr4i F f II Cn J | f 0 = Y f 1 = Y F II Cn J F 0 = Y F 1 = Y
15 6 14 bitrdi φ F B F II Cn J F 0 = Y F 1 = Y