Metamath Proof Explorer


Theorem om1addcl

Description: Closure of the group operation of the loop space. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses om1bas.o O = J Ω 1 Y
om1bas.j φ J TopOn X
om1bas.y φ Y X
om1bas.b φ B = Base O
om1addcl.h φ H B
om1addcl.k φ K B
Assertion om1addcl φ H * 𝑝 J K B

Proof

Step Hyp Ref Expression
1 om1bas.o O = J Ω 1 Y
2 om1bas.j φ J TopOn X
3 om1bas.y φ Y X
4 om1bas.b φ B = Base O
5 om1addcl.h φ H B
6 om1addcl.k φ K B
7 1 2 3 4 om1elbas φ H B H II Cn J H 0 = Y H 1 = Y
8 5 7 mpbid φ H II Cn J H 0 = Y H 1 = Y
9 8 simp1d φ H II Cn J
10 1 2 3 4 om1elbas φ K B K II Cn J K 0 = Y K 1 = Y
11 6 10 mpbid φ K II Cn J K 0 = Y K 1 = Y
12 11 simp1d φ K II Cn J
13 8 simp3d φ H 1 = Y
14 11 simp2d φ K 0 = Y
15 13 14 eqtr4d φ H 1 = K 0
16 9 12 15 pcocn φ H * 𝑝 J K II Cn J
17 9 12 pco0 φ H * 𝑝 J K 0 = H 0
18 8 simp2d φ H 0 = Y
19 17 18 eqtrd φ H * 𝑝 J K 0 = Y
20 9 12 pco1 φ H * 𝑝 J K 1 = K 1
21 11 simp3d φ K 1 = Y
22 20 21 eqtrd φ H * 𝑝 J K 1 = Y
23 1 2 3 4 om1elbas φ H * 𝑝 J K B H * 𝑝 J K II Cn J H * 𝑝 J K 0 = Y H * 𝑝 J K 1 = Y
24 16 19 22 23 mpbir3and φ H * 𝑝 J K B