Metamath Proof Explorer


Theorem om1addcl

Description: Closure of the group operation of the loop space. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses om1bas.o O=JΩ1Y
om1bas.j φJTopOnX
om1bas.y φYX
om1bas.b φB=BaseO
om1addcl.h φHB
om1addcl.k φKB
Assertion om1addcl φH*𝑝JKB

Proof

Step Hyp Ref Expression
1 om1bas.o O=JΩ1Y
2 om1bas.j φJTopOnX
3 om1bas.y φYX
4 om1bas.b φB=BaseO
5 om1addcl.h φHB
6 om1addcl.k φKB
7 1 2 3 4 om1elbas φHBHIICnJH0=YH1=Y
8 5 7 mpbid φHIICnJH0=YH1=Y
9 8 simp1d φHIICnJ
10 1 2 3 4 om1elbas φKBKIICnJK0=YK1=Y
11 6 10 mpbid φKIICnJK0=YK1=Y
12 11 simp1d φKIICnJ
13 8 simp3d φH1=Y
14 11 simp2d φK0=Y
15 13 14 eqtr4d φH1=K0
16 9 12 15 pcocn φH*𝑝JKIICnJ
17 9 12 pco0 φH*𝑝JK0=H0
18 8 simp2d φH0=Y
19 17 18 eqtrd φH*𝑝JK0=Y
20 9 12 pco1 φH*𝑝JK1=K1
21 11 simp3d φK1=Y
22 20 21 eqtrd φH*𝑝JK1=Y
23 1 2 3 4 om1elbas φH*𝑝JKBH*𝑝JKIICnJH*𝑝JK0=YH*𝑝JK1=Y
24 16 19 22 23 mpbir3and φH*𝑝JKB