Metamath Proof Explorer


Theorem om1addcl

Description: Closure of the group operation of the loop space. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses om1bas.o
|- O = ( J Om1 Y )
om1bas.j
|- ( ph -> J e. ( TopOn ` X ) )
om1bas.y
|- ( ph -> Y e. X )
om1bas.b
|- ( ph -> B = ( Base ` O ) )
om1addcl.h
|- ( ph -> H e. B )
om1addcl.k
|- ( ph -> K e. B )
Assertion om1addcl
|- ( ph -> ( H ( *p ` J ) K ) e. B )

Proof

Step Hyp Ref Expression
1 om1bas.o
 |-  O = ( J Om1 Y )
2 om1bas.j
 |-  ( ph -> J e. ( TopOn ` X ) )
3 om1bas.y
 |-  ( ph -> Y e. X )
4 om1bas.b
 |-  ( ph -> B = ( Base ` O ) )
5 om1addcl.h
 |-  ( ph -> H e. B )
6 om1addcl.k
 |-  ( ph -> K e. B )
7 1 2 3 4 om1elbas
 |-  ( ph -> ( H e. B <-> ( H e. ( II Cn J ) /\ ( H ` 0 ) = Y /\ ( H ` 1 ) = Y ) ) )
8 5 7 mpbid
 |-  ( ph -> ( H e. ( II Cn J ) /\ ( H ` 0 ) = Y /\ ( H ` 1 ) = Y ) )
9 8 simp1d
 |-  ( ph -> H e. ( II Cn J ) )
10 1 2 3 4 om1elbas
 |-  ( ph -> ( K e. B <-> ( K e. ( II Cn J ) /\ ( K ` 0 ) = Y /\ ( K ` 1 ) = Y ) ) )
11 6 10 mpbid
 |-  ( ph -> ( K e. ( II Cn J ) /\ ( K ` 0 ) = Y /\ ( K ` 1 ) = Y ) )
12 11 simp1d
 |-  ( ph -> K e. ( II Cn J ) )
13 8 simp3d
 |-  ( ph -> ( H ` 1 ) = Y )
14 11 simp2d
 |-  ( ph -> ( K ` 0 ) = Y )
15 13 14 eqtr4d
 |-  ( ph -> ( H ` 1 ) = ( K ` 0 ) )
16 9 12 15 pcocn
 |-  ( ph -> ( H ( *p ` J ) K ) e. ( II Cn J ) )
17 9 12 pco0
 |-  ( ph -> ( ( H ( *p ` J ) K ) ` 0 ) = ( H ` 0 ) )
18 8 simp2d
 |-  ( ph -> ( H ` 0 ) = Y )
19 17 18 eqtrd
 |-  ( ph -> ( ( H ( *p ` J ) K ) ` 0 ) = Y )
20 9 12 pco1
 |-  ( ph -> ( ( H ( *p ` J ) K ) ` 1 ) = ( K ` 1 ) )
21 11 simp3d
 |-  ( ph -> ( K ` 1 ) = Y )
22 20 21 eqtrd
 |-  ( ph -> ( ( H ( *p ` J ) K ) ` 1 ) = Y )
23 1 2 3 4 om1elbas
 |-  ( ph -> ( ( H ( *p ` J ) K ) e. B <-> ( ( H ( *p ` J ) K ) e. ( II Cn J ) /\ ( ( H ( *p ` J ) K ) ` 0 ) = Y /\ ( ( H ( *p ` J ) K ) ` 1 ) = Y ) ) )
24 16 19 22 23 mpbir3and
 |-  ( ph -> ( H ( *p ` J ) K ) e. B )