Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
|- O = ( J Om1 Y ) |
2 |
|
om1bas.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
om1bas.y |
|- ( ph -> Y e. X ) |
4 |
|
om1bas.b |
|- ( ph -> B = ( Base ` O ) ) |
5 |
|
om1addcl.h |
|- ( ph -> H e. B ) |
6 |
|
om1addcl.k |
|- ( ph -> K e. B ) |
7 |
1 2 3 4
|
om1elbas |
|- ( ph -> ( H e. B <-> ( H e. ( II Cn J ) /\ ( H ` 0 ) = Y /\ ( H ` 1 ) = Y ) ) ) |
8 |
5 7
|
mpbid |
|- ( ph -> ( H e. ( II Cn J ) /\ ( H ` 0 ) = Y /\ ( H ` 1 ) = Y ) ) |
9 |
8
|
simp1d |
|- ( ph -> H e. ( II Cn J ) ) |
10 |
1 2 3 4
|
om1elbas |
|- ( ph -> ( K e. B <-> ( K e. ( II Cn J ) /\ ( K ` 0 ) = Y /\ ( K ` 1 ) = Y ) ) ) |
11 |
6 10
|
mpbid |
|- ( ph -> ( K e. ( II Cn J ) /\ ( K ` 0 ) = Y /\ ( K ` 1 ) = Y ) ) |
12 |
11
|
simp1d |
|- ( ph -> K e. ( II Cn J ) ) |
13 |
8
|
simp3d |
|- ( ph -> ( H ` 1 ) = Y ) |
14 |
11
|
simp2d |
|- ( ph -> ( K ` 0 ) = Y ) |
15 |
13 14
|
eqtr4d |
|- ( ph -> ( H ` 1 ) = ( K ` 0 ) ) |
16 |
9 12 15
|
pcocn |
|- ( ph -> ( H ( *p ` J ) K ) e. ( II Cn J ) ) |
17 |
9 12
|
pco0 |
|- ( ph -> ( ( H ( *p ` J ) K ) ` 0 ) = ( H ` 0 ) ) |
18 |
8
|
simp2d |
|- ( ph -> ( H ` 0 ) = Y ) |
19 |
17 18
|
eqtrd |
|- ( ph -> ( ( H ( *p ` J ) K ) ` 0 ) = Y ) |
20 |
9 12
|
pco1 |
|- ( ph -> ( ( H ( *p ` J ) K ) ` 1 ) = ( K ` 1 ) ) |
21 |
11
|
simp3d |
|- ( ph -> ( K ` 1 ) = Y ) |
22 |
20 21
|
eqtrd |
|- ( ph -> ( ( H ( *p ` J ) K ) ` 1 ) = Y ) |
23 |
1 2 3 4
|
om1elbas |
|- ( ph -> ( ( H ( *p ` J ) K ) e. B <-> ( ( H ( *p ` J ) K ) e. ( II Cn J ) /\ ( ( H ( *p ` J ) K ) ` 0 ) = Y /\ ( ( H ( *p ` J ) K ) ` 1 ) = Y ) ) ) |
24 |
16 19 22 23
|
mpbir3and |
|- ( ph -> ( H ( *p ` J ) K ) e. B ) |