Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
|- O = ( J Om1 Y ) |
2 |
|
om1bas.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
om1bas.y |
|- ( ph -> Y e. X ) |
4 |
|
om1bas.b |
|- ( ph -> B = ( Base ` O ) ) |
5 |
1 2 3 4
|
om1bas |
|- ( ph -> B = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) |
6 |
5
|
eleq2d |
|- ( ph -> ( F e. B <-> F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) ) |
7 |
|
fveq1 |
|- ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) |
8 |
7
|
eqeq1d |
|- ( f = F -> ( ( f ` 0 ) = Y <-> ( F ` 0 ) = Y ) ) |
9 |
|
fveq1 |
|- ( f = F -> ( f ` 1 ) = ( F ` 1 ) ) |
10 |
9
|
eqeq1d |
|- ( f = F -> ( ( f ` 1 ) = Y <-> ( F ` 1 ) = Y ) ) |
11 |
8 10
|
anbi12d |
|- ( f = F -> ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) <-> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |
12 |
11
|
elrab |
|- ( F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } <-> ( F e. ( II Cn J ) /\ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |
13 |
|
3anass |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) <-> ( F e. ( II Cn J ) /\ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |
14 |
12 13
|
bitr4i |
|- ( F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) |
15 |
6 14
|
bitrdi |
|- ( ph -> ( F e. B <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |