Metamath Proof Explorer


Theorem om1elbas

Description: Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o
|- O = ( J Om1 Y )
om1bas.j
|- ( ph -> J e. ( TopOn ` X ) )
om1bas.y
|- ( ph -> Y e. X )
om1bas.b
|- ( ph -> B = ( Base ` O ) )
Assertion om1elbas
|- ( ph -> ( F e. B <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) )

Proof

Step Hyp Ref Expression
1 om1bas.o
 |-  O = ( J Om1 Y )
2 om1bas.j
 |-  ( ph -> J e. ( TopOn ` X ) )
3 om1bas.y
 |-  ( ph -> Y e. X )
4 om1bas.b
 |-  ( ph -> B = ( Base ` O ) )
5 1 2 3 4 om1bas
 |-  ( ph -> B = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } )
6 5 eleq2d
 |-  ( ph -> ( F e. B <-> F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) )
7 fveq1
 |-  ( f = F -> ( f ` 0 ) = ( F ` 0 ) )
8 7 eqeq1d
 |-  ( f = F -> ( ( f ` 0 ) = Y <-> ( F ` 0 ) = Y ) )
9 fveq1
 |-  ( f = F -> ( f ` 1 ) = ( F ` 1 ) )
10 9 eqeq1d
 |-  ( f = F -> ( ( f ` 1 ) = Y <-> ( F ` 1 ) = Y ) )
11 8 10 anbi12d
 |-  ( f = F -> ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) <-> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) )
12 11 elrab
 |-  ( F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } <-> ( F e. ( II Cn J ) /\ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) )
13 3anass
 |-  ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) <-> ( F e. ( II Cn J ) /\ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) )
14 12 13 bitr4i
 |-  ( F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) )
15 6 14 bitrdi
 |-  ( ph -> ( F e. B <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) )