| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om1bas.o |  |-  O = ( J Om1 Y ) | 
						
							| 2 |  | om1bas.j |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | om1bas.y |  |-  ( ph -> Y e. X ) | 
						
							| 4 |  | om1bas.b |  |-  ( ph -> B = ( Base ` O ) ) | 
						
							| 5 | 1 2 3 4 | om1bas |  |-  ( ph -> B = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) | 
						
							| 6 | 5 | eleq2d |  |-  ( ph -> ( F e. B <-> F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) ) | 
						
							| 7 |  | fveq1 |  |-  ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( f = F -> ( ( f ` 0 ) = Y <-> ( F ` 0 ) = Y ) ) | 
						
							| 9 |  | fveq1 |  |-  ( f = F -> ( f ` 1 ) = ( F ` 1 ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( f = F -> ( ( f ` 1 ) = Y <-> ( F ` 1 ) = Y ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( f = F -> ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) <-> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) | 
						
							| 12 | 11 | elrab |  |-  ( F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } <-> ( F e. ( II Cn J ) /\ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) | 
						
							| 13 |  | 3anass |  |-  ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) <-> ( F e. ( II Cn J ) /\ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) | 
						
							| 14 | 12 13 | bitr4i |  |-  ( F e. { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) | 
						
							| 15 | 6 14 | bitrdi |  |-  ( ph -> ( F e. B <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |