Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
|- O = ( J Om1 Y ) |
2 |
|
om1bas.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
om1bas.y |
|- ( ph -> Y e. X ) |
4 |
|
om1bas.b |
|- ( ph -> B = ( Base ` O ) ) |
5 |
|
eqidd |
|- ( ph -> { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) |
6 |
|
eqidd |
|- ( ph -> ( *p ` J ) = ( *p ` J ) ) |
7 |
|
eqidd |
|- ( ph -> ( J ^ko II ) = ( J ^ko II ) ) |
8 |
1 5 6 7 2 3
|
om1val |
|- ( ph -> O = { <. ( Base ` ndx ) , { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) |
9 |
8
|
fveq2d |
|- ( ph -> ( Base ` O ) = ( Base ` { <. ( Base ` ndx ) , { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) ) |
10 |
4 9
|
eqtrd |
|- ( ph -> B = ( Base ` { <. ( Base ` ndx ) , { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) ) |
11 |
|
ovex |
|- ( II Cn J ) e. _V |
12 |
11
|
rabex |
|- { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } e. _V |
13 |
|
eqid |
|- { <. ( Base ` ndx ) , { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } = { <. ( Base ` ndx ) , { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } |
14 |
13
|
topgrpbas |
|- ( { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } e. _V -> { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } = ( Base ` { <. ( Base ` ndx ) , { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) ) |
15 |
12 14
|
ax-mp |
|- { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } = ( Base ` { <. ( Base ` ndx ) , { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) |
16 |
10 15
|
eqtr4di |
|- ( ph -> B = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) |