Metamath Proof Explorer


Theorem om1bas

Description: The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o O=JΩ1Y
om1bas.j φJTopOnX
om1bas.y φYX
om1bas.b φB=BaseO
Assertion om1bas φB=fIICnJ|f0=Yf1=Y

Proof

Step Hyp Ref Expression
1 om1bas.o O=JΩ1Y
2 om1bas.j φJTopOnX
3 om1bas.y φYX
4 om1bas.b φB=BaseO
5 eqidd φfIICnJ|f0=Yf1=Y=fIICnJ|f0=Yf1=Y
6 eqidd φ*𝑝J=*𝑝J
7 eqidd φJ^koII=J^koII
8 1 5 6 7 2 3 om1val φO=BasendxfIICnJ|f0=Yf1=Y+ndx*𝑝JTopSetndxJ^koII
9 8 fveq2d φBaseO=BaseBasendxfIICnJ|f0=Yf1=Y+ndx*𝑝JTopSetndxJ^koII
10 4 9 eqtrd φB=BaseBasendxfIICnJ|f0=Yf1=Y+ndx*𝑝JTopSetndxJ^koII
11 ovex IICnJV
12 11 rabex fIICnJ|f0=Yf1=YV
13 eqid BasendxfIICnJ|f0=Yf1=Y+ndx*𝑝JTopSetndxJ^koII=BasendxfIICnJ|f0=Yf1=Y+ndx*𝑝JTopSetndxJ^koII
14 13 topgrpbas fIICnJ|f0=Yf1=YVfIICnJ|f0=Yf1=Y=BaseBasendxfIICnJ|f0=Yf1=Y+ndx*𝑝JTopSetndxJ^koII
15 12 14 ax-mp fIICnJ|f0=Yf1=Y=BaseBasendxfIICnJ|f0=Yf1=Y+ndx*𝑝JTopSetndxJ^koII
16 10 15 eqtr4di φB=fIICnJ|f0=Yf1=Y