Metamath Proof Explorer


Theorem om1bas

Description: The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o O = J Ω 1 Y
om1bas.j φ J TopOn X
om1bas.y φ Y X
om1bas.b φ B = Base O
Assertion om1bas φ B = f II Cn J | f 0 = Y f 1 = Y

Proof

Step Hyp Ref Expression
1 om1bas.o O = J Ω 1 Y
2 om1bas.j φ J TopOn X
3 om1bas.y φ Y X
4 om1bas.b φ B = Base O
5 eqidd φ f II Cn J | f 0 = Y f 1 = Y = f II Cn J | f 0 = Y f 1 = Y
6 eqidd φ * 𝑝 J = * 𝑝 J
7 eqidd φ J ^ ko II = J ^ ko II
8 1 5 6 7 2 3 om1val φ O = Base ndx f II Cn J | f 0 = Y f 1 = Y + ndx * 𝑝 J TopSet ndx J ^ ko II
9 8 fveq2d φ Base O = Base Base ndx f II Cn J | f 0 = Y f 1 = Y + ndx * 𝑝 J TopSet ndx J ^ ko II
10 4 9 eqtrd φ B = Base Base ndx f II Cn J | f 0 = Y f 1 = Y + ndx * 𝑝 J TopSet ndx J ^ ko II
11 ovex II Cn J V
12 11 rabex f II Cn J | f 0 = Y f 1 = Y V
13 eqid Base ndx f II Cn J | f 0 = Y f 1 = Y + ndx * 𝑝 J TopSet ndx J ^ ko II = Base ndx f II Cn J | f 0 = Y f 1 = Y + ndx * 𝑝 J TopSet ndx J ^ ko II
14 13 topgrpbas f II Cn J | f 0 = Y f 1 = Y V f II Cn J | f 0 = Y f 1 = Y = Base Base ndx f II Cn J | f 0 = Y f 1 = Y + ndx * 𝑝 J TopSet ndx J ^ ko II
15 12 14 ax-mp f II Cn J | f 0 = Y f 1 = Y = Base Base ndx f II Cn J | f 0 = Y f 1 = Y + ndx * 𝑝 J TopSet ndx J ^ ko II
16 10 15 eqtr4di φ B = f II Cn J | f 0 = Y f 1 = Y