Metamath Proof Explorer


Theorem om1val

Description: The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1val.o O = J Ω 1 Y
om1val.b φ B = f II Cn J | f 0 = Y f 1 = Y
om1val.p φ + ˙ = * 𝑝 J
om1val.k φ K = J ^ ko II
om1val.j φ J TopOn X
om1val.y φ Y X
Assertion om1val φ O = Base ndx B + ndx + ˙ TopSet ndx K

Proof

Step Hyp Ref Expression
1 om1val.o O = J Ω 1 Y
2 om1val.b φ B = f II Cn J | f 0 = Y f 1 = Y
3 om1val.p φ + ˙ = * 𝑝 J
4 om1val.k φ K = J ^ ko II
5 om1val.j φ J TopOn X
6 om1val.y φ Y X
7 df-om1 Ω 1 = j Top , y j Base ndx f II Cn j | f 0 = y f 1 = y + ndx * 𝑝 j TopSet ndx j ^ ko II
8 7 a1i φ Ω 1 = j Top , y j Base ndx f II Cn j | f 0 = y f 1 = y + ndx * 𝑝 j TopSet ndx j ^ ko II
9 simprl φ j = J y = Y j = J
10 9 oveq2d φ j = J y = Y II Cn j = II Cn J
11 simprr φ j = J y = Y y = Y
12 11 eqeq2d φ j = J y = Y f 0 = y f 0 = Y
13 11 eqeq2d φ j = J y = Y f 1 = y f 1 = Y
14 12 13 anbi12d φ j = J y = Y f 0 = y f 1 = y f 0 = Y f 1 = Y
15 10 14 rabeqbidv φ j = J y = Y f II Cn j | f 0 = y f 1 = y = f II Cn J | f 0 = Y f 1 = Y
16 2 adantr φ j = J y = Y B = f II Cn J | f 0 = Y f 1 = Y
17 15 16 eqtr4d φ j = J y = Y f II Cn j | f 0 = y f 1 = y = B
18 17 opeq2d φ j = J y = Y Base ndx f II Cn j | f 0 = y f 1 = y = Base ndx B
19 9 fveq2d φ j = J y = Y * 𝑝 j = * 𝑝 J
20 3 adantr φ j = J y = Y + ˙ = * 𝑝 J
21 19 20 eqtr4d φ j = J y = Y * 𝑝 j = + ˙
22 21 opeq2d φ j = J y = Y + ndx * 𝑝 j = + ndx + ˙
23 9 oveq1d φ j = J y = Y j ^ ko II = J ^ ko II
24 4 adantr φ j = J y = Y K = J ^ ko II
25 23 24 eqtr4d φ j = J y = Y j ^ ko II = K
26 25 opeq2d φ j = J y = Y TopSet ndx j ^ ko II = TopSet ndx K
27 18 22 26 tpeq123d φ j = J y = Y Base ndx f II Cn j | f 0 = y f 1 = y + ndx * 𝑝 j TopSet ndx j ^ ko II = Base ndx B + ndx + ˙ TopSet ndx K
28 unieq j = J j = J
29 28 adantl φ j = J j = J
30 toponuni J TopOn X X = J
31 5 30 syl φ X = J
32 31 adantr φ j = J X = J
33 29 32 eqtr4d φ j = J j = X
34 topontop J TopOn X J Top
35 5 34 syl φ J Top
36 tpex Base ndx B + ndx + ˙ TopSet ndx K V
37 36 a1i φ Base ndx B + ndx + ˙ TopSet ndx K V
38 8 27 33 35 6 37 ovmpodx φ J Ω 1 Y = Base ndx B + ndx + ˙ TopSet ndx K
39 1 38 eqtrid φ O = Base ndx B + ndx + ˙ TopSet ndx K