Step |
Hyp |
Ref |
Expression |
1 |
|
om1val.o |
|- O = ( J Om1 Y ) |
2 |
|
om1val.b |
|- ( ph -> B = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) |
3 |
|
om1val.p |
|- ( ph -> .+ = ( *p ` J ) ) |
4 |
|
om1val.k |
|- ( ph -> K = ( J ^ko II ) ) |
5 |
|
om1val.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
6 |
|
om1val.y |
|- ( ph -> Y e. X ) |
7 |
|
df-om1 |
|- Om1 = ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) |
8 |
7
|
a1i |
|- ( ph -> Om1 = ( j e. Top , y e. U. j |-> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } ) ) |
9 |
|
simprl |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> j = J ) |
10 |
9
|
oveq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( II Cn j ) = ( II Cn J ) ) |
11 |
|
simprr |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> y = Y ) |
12 |
11
|
eqeq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ( f ` 0 ) = y <-> ( f ` 0 ) = Y ) ) |
13 |
11
|
eqeq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ( f ` 1 ) = y <-> ( f ` 1 ) = Y ) ) |
14 |
12 13
|
anbi12d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) <-> ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) ) |
15 |
10 14
|
rabeqbidv |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) |
16 |
2
|
adantr |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> B = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) |
17 |
15 16
|
eqtr4d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } = B ) |
18 |
17
|
opeq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. = <. ( Base ` ndx ) , B >. ) |
19 |
9
|
fveq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( *p ` j ) = ( *p ` J ) ) |
20 |
3
|
adantr |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> .+ = ( *p ` J ) ) |
21 |
19 20
|
eqtr4d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( *p ` j ) = .+ ) |
22 |
21
|
opeq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> <. ( +g ` ndx ) , ( *p ` j ) >. = <. ( +g ` ndx ) , .+ >. ) |
23 |
9
|
oveq1d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j ^ko II ) = ( J ^ko II ) ) |
24 |
4
|
adantr |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> K = ( J ^ko II ) ) |
25 |
23 24
|
eqtr4d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j ^ko II ) = K ) |
26 |
25
|
opeq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> <. ( TopSet ` ndx ) , ( j ^ko II ) >. = <. ( TopSet ` ndx ) , K >. ) |
27 |
18 22 26
|
tpeq123d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> { <. ( Base ` ndx ) , { f e. ( II Cn j ) | ( ( f ` 0 ) = y /\ ( f ` 1 ) = y ) } >. , <. ( +g ` ndx ) , ( *p ` j ) >. , <. ( TopSet ` ndx ) , ( j ^ko II ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , K >. } ) |
28 |
|
unieq |
|- ( j = J -> U. j = U. J ) |
29 |
28
|
adantl |
|- ( ( ph /\ j = J ) -> U. j = U. J ) |
30 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
31 |
5 30
|
syl |
|- ( ph -> X = U. J ) |
32 |
31
|
adantr |
|- ( ( ph /\ j = J ) -> X = U. J ) |
33 |
29 32
|
eqtr4d |
|- ( ( ph /\ j = J ) -> U. j = X ) |
34 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
35 |
5 34
|
syl |
|- ( ph -> J e. Top ) |
36 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , K >. } e. _V |
37 |
36
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , K >. } e. _V ) |
38 |
8 27 33 35 6 37
|
ovmpodx |
|- ( ph -> ( J Om1 Y ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , K >. } ) |
39 |
1 38
|
eqtrid |
|- ( ph -> O = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , K >. } ) |