Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
2 |
|
om1bas.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
om1bas.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
4 |
|
om1bas.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑂 ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } = { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( *𝑝 ‘ 𝐽 ) = ( *𝑝 ‘ 𝐽 ) ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐽 ↑ko II ) = ( 𝐽 ↑ko II ) ) |
8 |
1 5 6 7 2 3
|
om1val |
⊢ ( 𝜑 → 𝑂 = { 〈 ( Base ‘ ndx ) , { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } 〉 , 〈 ( +g ‘ ndx ) , ( *𝑝 ‘ 𝐽 ) 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↑ko II ) 〉 } ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑂 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } 〉 , 〈 ( +g ‘ ndx ) , ( *𝑝 ‘ 𝐽 ) 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↑ko II ) 〉 } ) ) |
10 |
4 9
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } 〉 , 〈 ( +g ‘ ndx ) , ( *𝑝 ‘ 𝐽 ) 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↑ko II ) 〉 } ) ) |
11 |
|
ovex |
⊢ ( II Cn 𝐽 ) ∈ V |
12 |
11
|
rabex |
⊢ { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ∈ V |
13 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } 〉 , 〈 ( +g ‘ ndx ) , ( *𝑝 ‘ 𝐽 ) 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↑ko II ) 〉 } = { 〈 ( Base ‘ ndx ) , { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } 〉 , 〈 ( +g ‘ ndx ) , ( *𝑝 ‘ 𝐽 ) 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↑ko II ) 〉 } |
14 |
13
|
topgrpbas |
⊢ ( { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ∈ V → { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } 〉 , 〈 ( +g ‘ ndx ) , ( *𝑝 ‘ 𝐽 ) 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↑ko II ) 〉 } ) ) |
15 |
12 14
|
ax-mp |
⊢ { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } 〉 , 〈 ( +g ‘ ndx ) , ( *𝑝 ‘ 𝐽 ) 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↑ko II ) 〉 } ) |
16 |
10 15
|
eqtr4di |
⊢ ( 𝜑 → 𝐵 = { 𝑓 ∈ ( II Cn 𝐽 ) ∣ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) } ) |