Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
|- O = ( J Om1 Y ) |
2 |
|
om1bas.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
om1bas.y |
|- ( ph -> Y e. X ) |
4 |
|
fvex |
|- ( *p ` J ) e. _V |
5 |
|
eqid |
|- { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } = { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } |
6 |
5
|
topgrpplusg |
|- ( ( *p ` J ) e. _V -> ( *p ` J ) = ( +g ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) ) |
7 |
4 6
|
ax-mp |
|- ( *p ` J ) = ( +g ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) |
8 |
|
eqidd |
|- ( ph -> ( Base ` O ) = ( Base ` O ) ) |
9 |
1 2 3 8
|
om1bas |
|- ( ph -> ( Base ` O ) = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) |
10 |
|
eqidd |
|- ( ph -> ( *p ` J ) = ( *p ` J ) ) |
11 |
|
eqidd |
|- ( ph -> ( J ^ko II ) = ( J ^ko II ) ) |
12 |
1 9 10 11 2 3
|
om1val |
|- ( ph -> O = { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) |
13 |
12
|
fveq2d |
|- ( ph -> ( +g ` O ) = ( +g ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) ) |
14 |
7 13
|
eqtr4id |
|- ( ph -> ( *p ` J ) = ( +g ` O ) ) |