| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om1bas.o |  |-  O = ( J Om1 Y ) | 
						
							| 2 |  | om1bas.j |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | om1bas.y |  |-  ( ph -> Y e. X ) | 
						
							| 4 |  | ovex |  |-  ( J ^ko II ) e. _V | 
						
							| 5 |  | eqid |  |-  { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } = { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } | 
						
							| 6 | 5 | topgrptset |  |-  ( ( J ^ko II ) e. _V -> ( J ^ko II ) = ( TopSet ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) ) | 
						
							| 7 | 4 6 | ax-mp |  |-  ( J ^ko II ) = ( TopSet ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( Base ` O ) = ( Base ` O ) ) | 
						
							| 9 | 1 2 3 8 | om1bas |  |-  ( ph -> ( Base ` O ) = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } ) | 
						
							| 10 |  | eqidd |  |-  ( ph -> ( *p ` J ) = ( *p ` J ) ) | 
						
							| 11 |  | eqidd |  |-  ( ph -> ( J ^ko II ) = ( J ^ko II ) ) | 
						
							| 12 | 1 9 10 11 2 3 | om1val |  |-  ( ph -> O = { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ph -> ( TopSet ` O ) = ( TopSet ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) ) | 
						
							| 14 | 7 13 | eqtr4id |  |-  ( ph -> ( J ^ko II ) = ( TopSet ` O ) ) |