Metamath Proof Explorer


Theorem om1tset

Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o
|- O = ( J Om1 Y )
om1bas.j
|- ( ph -> J e. ( TopOn ` X ) )
om1bas.y
|- ( ph -> Y e. X )
Assertion om1tset
|- ( ph -> ( J ^ko II ) = ( TopSet ` O ) )

Proof

Step Hyp Ref Expression
1 om1bas.o
 |-  O = ( J Om1 Y )
2 om1bas.j
 |-  ( ph -> J e. ( TopOn ` X ) )
3 om1bas.y
 |-  ( ph -> Y e. X )
4 ovex
 |-  ( J ^ko II ) e. _V
5 eqid
 |-  { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } = { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. }
6 5 topgrptset
 |-  ( ( J ^ko II ) e. _V -> ( J ^ko II ) = ( TopSet ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) )
7 4 6 ax-mp
 |-  ( J ^ko II ) = ( TopSet ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } )
8 eqidd
 |-  ( ph -> ( Base ` O ) = ( Base ` O ) )
9 1 2 3 8 om1bas
 |-  ( ph -> ( Base ` O ) = { f e. ( II Cn J ) | ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) } )
10 eqidd
 |-  ( ph -> ( *p ` J ) = ( *p ` J ) )
11 eqidd
 |-  ( ph -> ( J ^ko II ) = ( J ^ko II ) )
12 1 9 10 11 2 3 om1val
 |-  ( ph -> O = { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } )
13 12 fveq2d
 |-  ( ph -> ( TopSet ` O ) = ( TopSet ` { <. ( Base ` ndx ) , ( Base ` O ) >. , <. ( +g ` ndx ) , ( *p ` J ) >. , <. ( TopSet ` ndx ) , ( J ^ko II ) >. } ) )
14 7 13 eqtr4id
 |-  ( ph -> ( J ^ko II ) = ( TopSet ` O ) )