Database
BASIC TOPOLOGY
Metric spaces
The fundamental group
om1tset
Next ⟩
om1opn
Metamath Proof Explorer
Ascii
Unicode
Theorem
om1tset
Description:
The topology of the loop space.
(Contributed by
Mario Carneiro
, 10-Jul-2015)
Ref
Expression
Hypotheses
om1bas.o
⊢
O
=
J
Ω
1
Y
om1bas.j
⊢
φ
→
J
∈
TopOn
⁡
X
om1bas.y
⊢
φ
→
Y
∈
X
Assertion
om1tset
⊢
φ
→
J
^
ko
II
=
TopSet
⁡
O
Proof
Step
Hyp
Ref
Expression
1
om1bas.o
⊢
O
=
J
Ω
1
Y
2
om1bas.j
⊢
φ
→
J
∈
TopOn
⁡
X
3
om1bas.y
⊢
φ
→
Y
∈
X
4
ovex
⊢
J
^
ko
II
∈
V
5
eqid
⊢
Base
ndx
Base
O
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
=
Base
ndx
Base
O
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
6
5
topgrptset
⊢
J
^
ko
II
∈
V
→
J
^
ko
II
=
TopSet
⁡
Base
ndx
Base
O
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
7
4
6
ax-mp
⊢
J
^
ko
II
=
TopSet
⁡
Base
ndx
Base
O
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
8
eqidd
⊢
φ
→
Base
O
=
Base
O
9
1
2
3
8
om1bas
⊢
φ
→
Base
O
=
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
10
eqidd
⊢
φ
→
*
𝑝
⁡
J
=
*
𝑝
⁡
J
11
eqidd
⊢
φ
→
J
^
ko
II
=
J
^
ko
II
12
1
9
10
11
2
3
om1val
⊢
φ
→
O
=
Base
ndx
Base
O
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
13
12
fveq2d
⊢
φ
→
TopSet
⁡
O
=
TopSet
⁡
Base
ndx
Base
O
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
14
7
13
eqtr4id
⊢
φ
→
J
^
ko
II
=
TopSet
⁡
O