Metamath Proof Explorer


Theorem om1opn

Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o
|- O = ( J Om1 Y )
om1bas.j
|- ( ph -> J e. ( TopOn ` X ) )
om1bas.y
|- ( ph -> Y e. X )
om1opn.k
|- K = ( TopOpen ` O )
om1opn.b
|- ( ph -> B = ( Base ` O ) )
Assertion om1opn
|- ( ph -> K = ( ( J ^ko II ) |`t B ) )

Proof

Step Hyp Ref Expression
1 om1bas.o
 |-  O = ( J Om1 Y )
2 om1bas.j
 |-  ( ph -> J e. ( TopOn ` X ) )
3 om1bas.y
 |-  ( ph -> Y e. X )
4 om1opn.k
 |-  K = ( TopOpen ` O )
5 om1opn.b
 |-  ( ph -> B = ( Base ` O ) )
6 eqid
 |-  ( Base ` O ) = ( Base ` O )
7 eqid
 |-  ( TopSet ` O ) = ( TopSet ` O )
8 6 7 topnval
 |-  ( ( TopSet ` O ) |`t ( Base ` O ) ) = ( TopOpen ` O )
9 4 8 eqtr4i
 |-  K = ( ( TopSet ` O ) |`t ( Base ` O ) )
10 1 2 3 om1tset
 |-  ( ph -> ( J ^ko II ) = ( TopSet ` O ) )
11 10 5 oveq12d
 |-  ( ph -> ( ( J ^ko II ) |`t B ) = ( ( TopSet ` O ) |`t ( Base ` O ) ) )
12 9 11 eqtr4id
 |-  ( ph -> K = ( ( J ^ko II ) |`t B ) )