| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om1bas.o |
|- O = ( J Om1 Y ) |
| 2 |
|
om1bas.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
om1bas.y |
|- ( ph -> Y e. X ) |
| 4 |
|
om1opn.k |
|- K = ( TopOpen ` O ) |
| 5 |
|
om1opn.b |
|- ( ph -> B = ( Base ` O ) ) |
| 6 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
| 7 |
|
eqid |
|- ( TopSet ` O ) = ( TopSet ` O ) |
| 8 |
6 7
|
topnval |
|- ( ( TopSet ` O ) |`t ( Base ` O ) ) = ( TopOpen ` O ) |
| 9 |
4 8
|
eqtr4i |
|- K = ( ( TopSet ` O ) |`t ( Base ` O ) ) |
| 10 |
1 2 3
|
om1tset |
|- ( ph -> ( J ^ko II ) = ( TopSet ` O ) ) |
| 11 |
10 5
|
oveq12d |
|- ( ph -> ( ( J ^ko II ) |`t B ) = ( ( TopSet ` O ) |`t ( Base ` O ) ) ) |
| 12 |
9 11
|
eqtr4id |
|- ( ph -> K = ( ( J ^ko II ) |`t B ) ) |