| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om1bas.o |  |-  O = ( J Om1 Y ) | 
						
							| 2 |  | om1bas.j |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | om1bas.y |  |-  ( ph -> Y e. X ) | 
						
							| 4 |  | om1opn.k |  |-  K = ( TopOpen ` O ) | 
						
							| 5 |  | om1opn.b |  |-  ( ph -> B = ( Base ` O ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` O ) = ( Base ` O ) | 
						
							| 7 |  | eqid |  |-  ( TopSet ` O ) = ( TopSet ` O ) | 
						
							| 8 | 6 7 | topnval |  |-  ( ( TopSet ` O ) |`t ( Base ` O ) ) = ( TopOpen ` O ) | 
						
							| 9 | 4 8 | eqtr4i |  |-  K = ( ( TopSet ` O ) |`t ( Base ` O ) ) | 
						
							| 10 | 1 2 3 | om1tset |  |-  ( ph -> ( J ^ko II ) = ( TopSet ` O ) ) | 
						
							| 11 | 10 5 | oveq12d |  |-  ( ph -> ( ( J ^ko II ) |`t B ) = ( ( TopSet ` O ) |`t ( Base ` O ) ) ) | 
						
							| 12 | 9 11 | eqtr4id |  |-  ( ph -> K = ( ( J ^ko II ) |`t B ) ) |