Step |
Hyp |
Ref |
Expression |
1 |
|
om1bas.o |
|- O = ( J Om1 Y ) |
2 |
|
om1bas.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
om1bas.y |
|- ( ph -> Y e. X ) |
4 |
|
om1opn.k |
|- K = ( TopOpen ` O ) |
5 |
|
om1opn.b |
|- ( ph -> B = ( Base ` O ) ) |
6 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
7 |
|
eqid |
|- ( TopSet ` O ) = ( TopSet ` O ) |
8 |
6 7
|
topnval |
|- ( ( TopSet ` O ) |`t ( Base ` O ) ) = ( TopOpen ` O ) |
9 |
4 8
|
eqtr4i |
|- K = ( ( TopSet ` O ) |`t ( Base ` O ) ) |
10 |
1 2 3
|
om1tset |
|- ( ph -> ( J ^ko II ) = ( TopSet ` O ) ) |
11 |
10 5
|
oveq12d |
|- ( ph -> ( ( J ^ko II ) |`t B ) = ( ( TopSet ` O ) |`t ( Base ` O ) ) ) |
12 |
9 11
|
eqtr4id |
|- ( ph -> K = ( ( J ^ko II ) |`t B ) ) |