| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1val.g |  |-  G = ( J pi1 Y ) | 
						
							| 2 |  | pi1val.1 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | pi1val.2 |  |-  ( ph -> Y e. X ) | 
						
							| 4 |  | pi1val.o |  |-  O = ( J Om1 Y ) | 
						
							| 5 |  | df-pi1 |  |-  pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) | 
						
							| 6 | 5 | a1i |  |-  ( ph -> pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) ) | 
						
							| 7 |  | simprl |  |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> j = J ) | 
						
							| 8 |  | simprr |  |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> y = Y ) | 
						
							| 9 | 7 8 | oveq12d |  |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j Om1 y ) = ( J Om1 Y ) ) | 
						
							| 10 | 9 4 | eqtr4di |  |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j Om1 y ) = O ) | 
						
							| 11 | 7 | fveq2d |  |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ~=ph ` j ) = ( ~=ph ` J ) ) | 
						
							| 12 | 10 11 | oveq12d |  |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ( j Om1 y ) /s ( ~=ph ` j ) ) = ( O /s ( ~=ph ` J ) ) ) | 
						
							| 13 |  | unieq |  |-  ( j = J -> U. j = U. J ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ j = J ) -> U. j = U. J ) | 
						
							| 15 |  | toponuni |  |-  ( J e. ( TopOn ` X ) -> X = U. J ) | 
						
							| 16 | 2 15 | syl |  |-  ( ph -> X = U. J ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ j = J ) -> X = U. J ) | 
						
							| 18 | 14 17 | eqtr4d |  |-  ( ( ph /\ j = J ) -> U. j = X ) | 
						
							| 19 |  | topontop |  |-  ( J e. ( TopOn ` X ) -> J e. Top ) | 
						
							| 20 | 2 19 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 21 |  | ovexd |  |-  ( ph -> ( O /s ( ~=ph ` J ) ) e. _V ) | 
						
							| 22 | 6 12 18 20 3 21 | ovmpodx |  |-  ( ph -> ( J pi1 Y ) = ( O /s ( ~=ph ` J ) ) ) | 
						
							| 23 | 1 22 | eqtrid |  |-  ( ph -> G = ( O /s ( ~=ph ` J ) ) ) |