Metamath Proof Explorer


Theorem pi1val

Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g
|- G = ( J pi1 Y )
pi1val.1
|- ( ph -> J e. ( TopOn ` X ) )
pi1val.2
|- ( ph -> Y e. X )
pi1val.o
|- O = ( J Om1 Y )
Assertion pi1val
|- ( ph -> G = ( O /s ( ~=ph ` J ) ) )

Proof

Step Hyp Ref Expression
1 pi1val.g
 |-  G = ( J pi1 Y )
2 pi1val.1
 |-  ( ph -> J e. ( TopOn ` X ) )
3 pi1val.2
 |-  ( ph -> Y e. X )
4 pi1val.o
 |-  O = ( J Om1 Y )
5 df-pi1
 |-  pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) )
6 5 a1i
 |-  ( ph -> pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) )
7 simprl
 |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> j = J )
8 simprr
 |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> y = Y )
9 7 8 oveq12d
 |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j Om1 y ) = ( J Om1 Y ) )
10 9 4 eqtr4di
 |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j Om1 y ) = O )
11 7 fveq2d
 |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ~=ph ` j ) = ( ~=ph ` J ) )
12 10 11 oveq12d
 |-  ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ( j Om1 y ) /s ( ~=ph ` j ) ) = ( O /s ( ~=ph ` J ) ) )
13 unieq
 |-  ( j = J -> U. j = U. J )
14 13 adantl
 |-  ( ( ph /\ j = J ) -> U. j = U. J )
15 toponuni
 |-  ( J e. ( TopOn ` X ) -> X = U. J )
16 2 15 syl
 |-  ( ph -> X = U. J )
17 16 adantr
 |-  ( ( ph /\ j = J ) -> X = U. J )
18 14 17 eqtr4d
 |-  ( ( ph /\ j = J ) -> U. j = X )
19 topontop
 |-  ( J e. ( TopOn ` X ) -> J e. Top )
20 2 19 syl
 |-  ( ph -> J e. Top )
21 ovexd
 |-  ( ph -> ( O /s ( ~=ph ` J ) ) e. _V )
22 6 12 18 20 3 21 ovmpodx
 |-  ( ph -> ( J pi1 Y ) = ( O /s ( ~=ph ` J ) ) )
23 1 22 eqtrid
 |-  ( ph -> G = ( O /s ( ~=ph ` J ) ) )