| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1val.g |
|- G = ( J pi1 Y ) |
| 2 |
|
pi1val.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
pi1val.2 |
|- ( ph -> Y e. X ) |
| 4 |
|
pi1val.o |
|- O = ( J Om1 Y ) |
| 5 |
|
df-pi1 |
|- pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) |
| 6 |
5
|
a1i |
|- ( ph -> pi1 = ( j e. Top , y e. U. j |-> ( ( j Om1 y ) /s ( ~=ph ` j ) ) ) ) |
| 7 |
|
simprl |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> j = J ) |
| 8 |
|
simprr |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> y = Y ) |
| 9 |
7 8
|
oveq12d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j Om1 y ) = ( J Om1 Y ) ) |
| 10 |
9 4
|
eqtr4di |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( j Om1 y ) = O ) |
| 11 |
7
|
fveq2d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ~=ph ` j ) = ( ~=ph ` J ) ) |
| 12 |
10 11
|
oveq12d |
|- ( ( ph /\ ( j = J /\ y = Y ) ) -> ( ( j Om1 y ) /s ( ~=ph ` j ) ) = ( O /s ( ~=ph ` J ) ) ) |
| 13 |
|
unieq |
|- ( j = J -> U. j = U. J ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ j = J ) -> U. j = U. J ) |
| 15 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
| 16 |
2 15
|
syl |
|- ( ph -> X = U. J ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ j = J ) -> X = U. J ) |
| 18 |
14 17
|
eqtr4d |
|- ( ( ph /\ j = J ) -> U. j = X ) |
| 19 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
| 20 |
2 19
|
syl |
|- ( ph -> J e. Top ) |
| 21 |
|
ovexd |
|- ( ph -> ( O /s ( ~=ph ` J ) ) e. _V ) |
| 22 |
6 12 18 20 3 21
|
ovmpodx |
|- ( ph -> ( J pi1 Y ) = ( O /s ( ~=ph ` J ) ) ) |
| 23 |
1 22
|
eqtrid |
|- ( ph -> G = ( O /s ( ~=ph ` J ) ) ) |