| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1val.g | ⊢ 𝐺  =  ( 𝐽  π1  𝑌 ) | 
						
							| 2 |  | pi1val.1 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | pi1val.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 4 |  | pi1val.o | ⊢ 𝑂  =  ( 𝐽  Ω1  𝑌 ) | 
						
							| 5 |  | df-pi1 | ⊢  π1   =  ( 𝑗  ∈  Top ,  𝑦  ∈  ∪  𝑗  ↦  ( ( 𝑗  Ω1  𝑦 )  /s  (  ≃ph ‘ 𝑗 ) ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →   π1   =  ( 𝑗  ∈  Top ,  𝑦  ∈  ∪  𝑗  ↦  ( ( 𝑗  Ω1  𝑦 )  /s  (  ≃ph ‘ 𝑗 ) ) ) ) | 
						
							| 7 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑗  =  𝐽  ∧  𝑦  =  𝑌 ) )  →  𝑗  =  𝐽 ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑗  =  𝐽  ∧  𝑦  =  𝑌 ) )  →  𝑦  =  𝑌 ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑗  =  𝐽  ∧  𝑦  =  𝑌 ) )  →  ( 𝑗  Ω1  𝑦 )  =  ( 𝐽  Ω1  𝑌 ) ) | 
						
							| 10 | 9 4 | eqtr4di | ⊢ ( ( 𝜑  ∧  ( 𝑗  =  𝐽  ∧  𝑦  =  𝑌 ) )  →  ( 𝑗  Ω1  𝑦 )  =  𝑂 ) | 
						
							| 11 | 7 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  =  𝐽  ∧  𝑦  =  𝑌 ) )  →  (  ≃ph ‘ 𝑗 )  =  (  ≃ph ‘ 𝐽 ) ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑗  =  𝐽  ∧  𝑦  =  𝑌 ) )  →  ( ( 𝑗  Ω1  𝑦 )  /s  (  ≃ph ‘ 𝑗 ) )  =  ( 𝑂  /s  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 13 |  | unieq | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  =  𝐽 )  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 15 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 16 | 2 15 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  =  𝐽 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 18 | 14 17 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑗  =  𝐽 )  →  ∪  𝑗  =  𝑋 ) | 
						
							| 19 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 21 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑂  /s  (  ≃ph ‘ 𝐽 ) )  ∈  V ) | 
						
							| 22 | 6 12 18 20 3 21 | ovmpodx | ⊢ ( 𝜑  →  ( 𝐽  π1  𝑌 )  =  ( 𝑂  /s  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 23 | 1 22 | eqtrid | ⊢ ( 𝜑  →  𝐺  =  ( 𝑂  /s  (  ≃ph ‘ 𝐽 ) ) ) |