| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1val.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
| 2 |
|
pi1val.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
pi1val.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 4 |
|
pi1val.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
| 5 |
|
df-pi1 |
⊢ π1 = ( 𝑗 ∈ Top , 𝑦 ∈ ∪ 𝑗 ↦ ( ( 𝑗 Ω1 𝑦 ) /s ( ≃ph ‘ 𝑗 ) ) ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → π1 = ( 𝑗 ∈ Top , 𝑦 ∈ ∪ 𝑗 ↦ ( ( 𝑗 Ω1 𝑦 ) /s ( ≃ph ‘ 𝑗 ) ) ) ) |
| 7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑦 = 𝑌 ) ) → 𝑗 = 𝐽 ) |
| 8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) |
| 9 |
7 8
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑦 = 𝑌 ) ) → ( 𝑗 Ω1 𝑦 ) = ( 𝐽 Ω1 𝑌 ) ) |
| 10 |
9 4
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑦 = 𝑌 ) ) → ( 𝑗 Ω1 𝑦 ) = 𝑂 ) |
| 11 |
7
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑦 = 𝑌 ) ) → ( ≃ph ‘ 𝑗 ) = ( ≃ph ‘ 𝐽 ) ) |
| 12 |
10 11
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑗 = 𝐽 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑗 Ω1 𝑦 ) /s ( ≃ph ‘ 𝑗 ) ) = ( 𝑂 /s ( ≃ph ‘ 𝐽 ) ) ) |
| 13 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 15 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝐽 ) → 𝑋 = ∪ 𝐽 ) |
| 18 |
14 17
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = 𝑋 ) |
| 19 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 21 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑂 /s ( ≃ph ‘ 𝐽 ) ) ∈ V ) |
| 22 |
6 12 18 20 3 21
|
ovmpodx |
⊢ ( 𝜑 → ( 𝐽 π1 𝑌 ) = ( 𝑂 /s ( ≃ph ‘ 𝐽 ) ) ) |
| 23 |
1 22
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑂 /s ( ≃ph ‘ 𝐽 ) ) ) |