Metamath Proof Explorer


Theorem pi1val

Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G=Jπ1Y
pi1val.1 φJTopOnX
pi1val.2 φYX
pi1val.o O=JΩ1Y
Assertion pi1val φG=O/𝑠phJ

Proof

Step Hyp Ref Expression
1 pi1val.g G=Jπ1Y
2 pi1val.1 φJTopOnX
3 pi1val.2 φYX
4 pi1val.o O=JΩ1Y
5 df-pi1 π1=jTop,yjjΩ1y/𝑠phj
6 5 a1i φπ1=jTop,yjjΩ1y/𝑠phj
7 simprl φj=Jy=Yj=J
8 simprr φj=Jy=Yy=Y
9 7 8 oveq12d φj=Jy=YjΩ1y=JΩ1Y
10 9 4 eqtr4di φj=Jy=YjΩ1y=O
11 7 fveq2d φj=Jy=Yphj=phJ
12 10 11 oveq12d φj=Jy=YjΩ1y/𝑠phj=O/𝑠phJ
13 unieq j=Jj=J
14 13 adantl φj=Jj=J
15 toponuni JTopOnXX=J
16 2 15 syl φX=J
17 16 adantr φj=JX=J
18 14 17 eqtr4d φj=Jj=X
19 topontop JTopOnXJTop
20 2 19 syl φJTop
21 ovexd φO/𝑠phJV
22 6 12 18 20 3 21 ovmpodx φJπ1Y=O/𝑠phJ
23 1 22 eqtrid φG=O/𝑠phJ