Metamath Proof Explorer


Theorem pi1val

Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G = J π 1 Y
pi1val.1 φ J TopOn X
pi1val.2 φ Y X
pi1val.o O = J Ω 1 Y
Assertion pi1val φ G = O / 𝑠 ph J

Proof

Step Hyp Ref Expression
1 pi1val.g G = J π 1 Y
2 pi1val.1 φ J TopOn X
3 pi1val.2 φ Y X
4 pi1val.o O = J Ω 1 Y
5 df-pi1 π 1 = j Top , y j j Ω 1 y / 𝑠 ph j
6 5 a1i φ π 1 = j Top , y j j Ω 1 y / 𝑠 ph j
7 simprl φ j = J y = Y j = J
8 simprr φ j = J y = Y y = Y
9 7 8 oveq12d φ j = J y = Y j Ω 1 y = J Ω 1 Y
10 9 4 eqtr4di φ j = J y = Y j Ω 1 y = O
11 7 fveq2d φ j = J y = Y ph j = ph J
12 10 11 oveq12d φ j = J y = Y j Ω 1 y / 𝑠 ph j = O / 𝑠 ph J
13 unieq j = J j = J
14 13 adantl φ j = J j = J
15 toponuni J TopOn X X = J
16 2 15 syl φ X = J
17 16 adantr φ j = J X = J
18 14 17 eqtr4d φ j = J j = X
19 topontop J TopOn X J Top
20 2 19 syl φ J Top
21 ovexd φ O / 𝑠 ph J V
22 6 12 18 20 3 21 ovmpodx φ J π 1 Y = O / 𝑠 ph J
23 1 22 eqtrid φ G = O / 𝑠 ph J