Metamath Proof Explorer


Theorem pi1bas

Description: The base set of the fundamental group of a topological space at a given base point. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G=Jπ1Y
pi1val.1 φJTopOnX
pi1val.2 φYX
pi1val.o O=JΩ1Y
pi1bas.b φB=BaseG
pi1bas.k φK=BaseO
Assertion pi1bas φB=K/phJ

Proof

Step Hyp Ref Expression
1 pi1val.g G=Jπ1Y
2 pi1val.1 φJTopOnX
3 pi1val.2 φYX
4 pi1val.o O=JΩ1Y
5 pi1bas.b φB=BaseG
6 pi1bas.k φK=BaseO
7 1 2 3 4 pi1val φG=O/𝑠phJ
8 eqidd φBaseO=BaseO
9 fvexd φphJV
10 4 ovexi OV
11 10 a1i φOV
12 7 8 9 11 qusbas φBaseO/phJ=BaseG
13 qseq1 K=BaseOK/phJ=BaseO/phJ
14 6 13 syl φK/phJ=BaseO/phJ
15 12 14 5 3eqtr4rd φB=K/phJ