Metamath Proof Explorer


Theorem pi1bas

Description: The base set of the fundamental group of a topological space at a given base point. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G = J π 1 Y
pi1val.1 φ J TopOn X
pi1val.2 φ Y X
pi1val.o O = J Ω 1 Y
pi1bas.b φ B = Base G
pi1bas.k φ K = Base O
Assertion pi1bas φ B = K / ph J

Proof

Step Hyp Ref Expression
1 pi1val.g G = J π 1 Y
2 pi1val.1 φ J TopOn X
3 pi1val.2 φ Y X
4 pi1val.o O = J Ω 1 Y
5 pi1bas.b φ B = Base G
6 pi1bas.k φ K = Base O
7 1 2 3 4 pi1val φ G = O / 𝑠 ph J
8 eqidd φ Base O = Base O
9 fvexd φ ph J V
10 4 ovexi O V
11 10 a1i φ O V
12 7 8 9 11 qusbas φ Base O / ph J = Base G
13 qseq1 K = Base O K / ph J = Base O / ph J
14 6 13 syl φ K / ph J = Base O / ph J
15 12 14 5 3eqtr4rd φ B = K / ph J