Metamath Proof Explorer


Theorem pi1blem

Description: Lemma for pi1buni . (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G=Jπ1Y
pi1val.1 φJTopOnX
pi1val.2 φYX
pi1val.o O=JΩ1Y
pi1bas.b φB=BaseG
pi1bas.k φK=BaseO
Assertion pi1blem φphJKKKIICnJ

Proof

Step Hyp Ref Expression
1 pi1val.g G=Jπ1Y
2 pi1val.1 φJTopOnX
3 pi1val.2 φYX
4 pi1val.o O=JΩ1Y
5 pi1bas.b φB=BaseG
6 pi1bas.k φK=BaseO
7 vex xV
8 7 elima xphJKyKyphJx
9 simpr φyphJxyphJx
10 isphtpc yphJxyIICnJxIICnJyPHtpyJx
11 9 10 sylib φyphJxyIICnJxIICnJyPHtpyJx
12 11 adantrl φyKyphJxyIICnJxIICnJyPHtpyJx
13 12 simp2d φyKyphJxxIICnJ
14 phtpc01 yphJxy0=x0y1=x1
15 14 ad2antll φyKyphJxy0=x0y1=x1
16 15 simpld φyKyphJxy0=x0
17 4 2 3 6 om1elbas φyKyIICnJy0=Yy1=Y
18 17 biimpa φyKyIICnJy0=Yy1=Y
19 18 adantrr φyKyphJxyIICnJy0=Yy1=Y
20 19 simp2d φyKyphJxy0=Y
21 16 20 eqtr3d φyKyphJxx0=Y
22 15 simprd φyKyphJxy1=x1
23 19 simp3d φyKyphJxy1=Y
24 22 23 eqtr3d φyKyphJxx1=Y
25 4 2 3 6 om1elbas φxKxIICnJx0=Yx1=Y
26 25 adantr φyKyphJxxKxIICnJx0=Yx1=Y
27 13 21 24 26 mpbir3and φyKyphJxxK
28 27 rexlimdvaa φyKyphJxxK
29 8 28 biimtrid φxphJKxK
30 29 ssrdv φphJKK
31 simp1 xIICnJx0=Yx1=YxIICnJ
32 25 31 syl6bi φxKxIICnJ
33 32 ssrdv φKIICnJ
34 30 33 jca φphJKKKIICnJ