| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1val.g |
|- G = ( J pi1 Y ) |
| 2 |
|
pi1val.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
pi1val.2 |
|- ( ph -> Y e. X ) |
| 4 |
|
pi1val.o |
|- O = ( J Om1 Y ) |
| 5 |
|
pi1bas.b |
|- ( ph -> B = ( Base ` G ) ) |
| 6 |
|
pi1bas.k |
|- ( ph -> K = ( Base ` O ) ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
7
|
elima |
|- ( x e. ( ( ~=ph ` J ) " K ) <-> E. y e. K y ( ~=ph ` J ) x ) |
| 9 |
|
simpr |
|- ( ( ph /\ y ( ~=ph ` J ) x ) -> y ( ~=ph ` J ) x ) |
| 10 |
|
isphtpc |
|- ( y ( ~=ph ` J ) x <-> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) |
| 11 |
9 10
|
sylib |
|- ( ( ph /\ y ( ~=ph ` J ) x ) -> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) |
| 12 |
11
|
adantrl |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) |
| 13 |
12
|
simp2d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> x e. ( II Cn J ) ) |
| 14 |
|
phtpc01 |
|- ( y ( ~=ph ` J ) x -> ( ( y ` 0 ) = ( x ` 0 ) /\ ( y ` 1 ) = ( x ` 1 ) ) ) |
| 15 |
14
|
ad2antll |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( ( y ` 0 ) = ( x ` 0 ) /\ ( y ` 1 ) = ( x ` 1 ) ) ) |
| 16 |
15
|
simpld |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 0 ) = ( x ` 0 ) ) |
| 17 |
4 2 3 6
|
om1elbas |
|- ( ph -> ( y e. K <-> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) ) |
| 18 |
17
|
biimpa |
|- ( ( ph /\ y e. K ) -> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) |
| 19 |
18
|
adantrr |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) |
| 20 |
19
|
simp2d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 0 ) = Y ) |
| 21 |
16 20
|
eqtr3d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x ` 0 ) = Y ) |
| 22 |
15
|
simprd |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 1 ) = ( x ` 1 ) ) |
| 23 |
19
|
simp3d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 1 ) = Y ) |
| 24 |
22 23
|
eqtr3d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x ` 1 ) = Y ) |
| 25 |
4 2 3 6
|
om1elbas |
|- ( ph -> ( x e. K <-> ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x e. K <-> ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) ) ) |
| 27 |
13 21 24 26
|
mpbir3and |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> x e. K ) |
| 28 |
27
|
rexlimdvaa |
|- ( ph -> ( E. y e. K y ( ~=ph ` J ) x -> x e. K ) ) |
| 29 |
8 28
|
biimtrid |
|- ( ph -> ( x e. ( ( ~=ph ` J ) " K ) -> x e. K ) ) |
| 30 |
29
|
ssrdv |
|- ( ph -> ( ( ~=ph ` J ) " K ) C_ K ) |
| 31 |
|
simp1 |
|- ( ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) -> x e. ( II Cn J ) ) |
| 32 |
25 31
|
biimtrdi |
|- ( ph -> ( x e. K -> x e. ( II Cn J ) ) ) |
| 33 |
32
|
ssrdv |
|- ( ph -> K C_ ( II Cn J ) ) |
| 34 |
30 33
|
jca |
|- ( ph -> ( ( ( ~=ph ` J ) " K ) C_ K /\ K C_ ( II Cn J ) ) ) |