| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1val.g |  |-  G = ( J pi1 Y ) | 
						
							| 2 |  | pi1val.1 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | pi1val.2 |  |-  ( ph -> Y e. X ) | 
						
							| 4 |  | pi1val.o |  |-  O = ( J Om1 Y ) | 
						
							| 5 |  | pi1bas.b |  |-  ( ph -> B = ( Base ` G ) ) | 
						
							| 6 |  | pi1bas.k |  |-  ( ph -> K = ( Base ` O ) ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 | 7 | elima |  |-  ( x e. ( ( ~=ph ` J ) " K ) <-> E. y e. K y ( ~=ph ` J ) x ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ y ( ~=ph ` J ) x ) -> y ( ~=ph ` J ) x ) | 
						
							| 10 |  | isphtpc |  |-  ( y ( ~=ph ` J ) x <-> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ( ph /\ y ( ~=ph ` J ) x ) -> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) | 
						
							| 12 | 11 | adantrl |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) | 
						
							| 13 | 12 | simp2d |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> x e. ( II Cn J ) ) | 
						
							| 14 |  | phtpc01 |  |-  ( y ( ~=ph ` J ) x -> ( ( y ` 0 ) = ( x ` 0 ) /\ ( y ` 1 ) = ( x ` 1 ) ) ) | 
						
							| 15 | 14 | ad2antll |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( ( y ` 0 ) = ( x ` 0 ) /\ ( y ` 1 ) = ( x ` 1 ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 0 ) = ( x ` 0 ) ) | 
						
							| 17 | 4 2 3 6 | om1elbas |  |-  ( ph -> ( y e. K <-> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( ph /\ y e. K ) -> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) | 
						
							| 19 | 18 | adantrr |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) | 
						
							| 20 | 19 | simp2d |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 0 ) = Y ) | 
						
							| 21 | 16 20 | eqtr3d |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x ` 0 ) = Y ) | 
						
							| 22 | 15 | simprd |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 1 ) = ( x ` 1 ) ) | 
						
							| 23 | 19 | simp3d |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 1 ) = Y ) | 
						
							| 24 | 22 23 | eqtr3d |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x ` 1 ) = Y ) | 
						
							| 25 | 4 2 3 6 | om1elbas |  |-  ( ph -> ( x e. K <-> ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x e. K <-> ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) ) ) | 
						
							| 27 | 13 21 24 26 | mpbir3and |  |-  ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> x e. K ) | 
						
							| 28 | 27 | rexlimdvaa |  |-  ( ph -> ( E. y e. K y ( ~=ph ` J ) x -> x e. K ) ) | 
						
							| 29 | 8 28 | biimtrid |  |-  ( ph -> ( x e. ( ( ~=ph ` J ) " K ) -> x e. K ) ) | 
						
							| 30 | 29 | ssrdv |  |-  ( ph -> ( ( ~=ph ` J ) " K ) C_ K ) | 
						
							| 31 |  | simp1 |  |-  ( ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) -> x e. ( II Cn J ) ) | 
						
							| 32 | 25 31 | biimtrdi |  |-  ( ph -> ( x e. K -> x e. ( II Cn J ) ) ) | 
						
							| 33 | 32 | ssrdv |  |-  ( ph -> K C_ ( II Cn J ) ) | 
						
							| 34 | 30 33 | jca |  |-  ( ph -> ( ( ( ~=ph ` J ) " K ) C_ K /\ K C_ ( II Cn J ) ) ) |