Step |
Hyp |
Ref |
Expression |
1 |
|
pi1val.g |
|- G = ( J pi1 Y ) |
2 |
|
pi1val.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
pi1val.2 |
|- ( ph -> Y e. X ) |
4 |
|
pi1val.o |
|- O = ( J Om1 Y ) |
5 |
|
pi1bas.b |
|- ( ph -> B = ( Base ` G ) ) |
6 |
|
pi1bas.k |
|- ( ph -> K = ( Base ` O ) ) |
7 |
|
vex |
|- x e. _V |
8 |
7
|
elima |
|- ( x e. ( ( ~=ph ` J ) " K ) <-> E. y e. K y ( ~=ph ` J ) x ) |
9 |
|
simpr |
|- ( ( ph /\ y ( ~=ph ` J ) x ) -> y ( ~=ph ` J ) x ) |
10 |
|
isphtpc |
|- ( y ( ~=ph ` J ) x <-> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) |
11 |
9 10
|
sylib |
|- ( ( ph /\ y ( ~=ph ` J ) x ) -> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) |
12 |
11
|
adantrl |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y e. ( II Cn J ) /\ x e. ( II Cn J ) /\ ( y ( PHtpy ` J ) x ) =/= (/) ) ) |
13 |
12
|
simp2d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> x e. ( II Cn J ) ) |
14 |
|
phtpc01 |
|- ( y ( ~=ph ` J ) x -> ( ( y ` 0 ) = ( x ` 0 ) /\ ( y ` 1 ) = ( x ` 1 ) ) ) |
15 |
14
|
ad2antll |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( ( y ` 0 ) = ( x ` 0 ) /\ ( y ` 1 ) = ( x ` 1 ) ) ) |
16 |
15
|
simpld |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 0 ) = ( x ` 0 ) ) |
17 |
4 2 3 6
|
om1elbas |
|- ( ph -> ( y e. K <-> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) ) |
18 |
17
|
biimpa |
|- ( ( ph /\ y e. K ) -> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) |
19 |
18
|
adantrr |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y e. ( II Cn J ) /\ ( y ` 0 ) = Y /\ ( y ` 1 ) = Y ) ) |
20 |
19
|
simp2d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 0 ) = Y ) |
21 |
16 20
|
eqtr3d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x ` 0 ) = Y ) |
22 |
15
|
simprd |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 1 ) = ( x ` 1 ) ) |
23 |
19
|
simp3d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( y ` 1 ) = Y ) |
24 |
22 23
|
eqtr3d |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x ` 1 ) = Y ) |
25 |
4 2 3 6
|
om1elbas |
|- ( ph -> ( x e. K <-> ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> ( x e. K <-> ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) ) ) |
27 |
13 21 24 26
|
mpbir3and |
|- ( ( ph /\ ( y e. K /\ y ( ~=ph ` J ) x ) ) -> x e. K ) |
28 |
27
|
rexlimdvaa |
|- ( ph -> ( E. y e. K y ( ~=ph ` J ) x -> x e. K ) ) |
29 |
8 28
|
syl5bi |
|- ( ph -> ( x e. ( ( ~=ph ` J ) " K ) -> x e. K ) ) |
30 |
29
|
ssrdv |
|- ( ph -> ( ( ~=ph ` J ) " K ) C_ K ) |
31 |
|
simp1 |
|- ( ( x e. ( II Cn J ) /\ ( x ` 0 ) = Y /\ ( x ` 1 ) = Y ) -> x e. ( II Cn J ) ) |
32 |
25 31
|
syl6bi |
|- ( ph -> ( x e. K -> x e. ( II Cn J ) ) ) |
33 |
32
|
ssrdv |
|- ( ph -> K C_ ( II Cn J ) ) |
34 |
30 33
|
jca |
|- ( ph -> ( ( ( ~=ph ` J ) " K ) C_ K /\ K C_ ( II Cn J ) ) ) |