| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1val.g |
|- G = ( J pi1 Y ) |
| 2 |
|
pi1val.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
pi1val.2 |
|- ( ph -> Y e. X ) |
| 4 |
|
pi1val.o |
|- O = ( J Om1 Y ) |
| 5 |
|
pi1bas.b |
|- ( ph -> B = ( Base ` G ) ) |
| 6 |
|
pi1bas.k |
|- ( ph -> K = ( Base ` O ) ) |
| 7 |
1 2 3 4 5 6
|
pi1bas |
|- ( ph -> B = ( K /. ( ~=ph ` J ) ) ) |
| 8 |
1 2 3 4 5 6
|
pi1blem |
|- ( ph -> ( ( ( ~=ph ` J ) " K ) C_ K /\ K C_ ( II Cn J ) ) ) |
| 9 |
8
|
simpld |
|- ( ph -> ( ( ~=ph ` J ) " K ) C_ K ) |
| 10 |
|
qsinxp |
|- ( ( ( ~=ph ` J ) " K ) C_ K -> ( K /. ( ~=ph ` J ) ) = ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> ( K /. ( ~=ph ` J ) ) = ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) ) |
| 12 |
7 11
|
eqtrd |
|- ( ph -> B = ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) ) |
| 13 |
12
|
unieqd |
|- ( ph -> U. B = U. ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) ) |
| 14 |
|
phtpcer |
|- ( ~=ph ` J ) Er ( II Cn J ) |
| 15 |
14
|
a1i |
|- ( ph -> ( ~=ph ` J ) Er ( II Cn J ) ) |
| 16 |
8
|
simprd |
|- ( ph -> K C_ ( II Cn J ) ) |
| 17 |
15 16
|
erinxp |
|- ( ph -> ( ( ~=ph ` J ) i^i ( K X. K ) ) Er K ) |
| 18 |
|
fvex |
|- ( ~=ph ` J ) e. _V |
| 19 |
18
|
inex1 |
|- ( ( ~=ph ` J ) i^i ( K X. K ) ) e. _V |
| 20 |
19
|
a1i |
|- ( ph -> ( ( ~=ph ` J ) i^i ( K X. K ) ) e. _V ) |
| 21 |
17 20
|
uniqs2 |
|- ( ph -> U. ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) = K ) |
| 22 |
13 21
|
eqtrd |
|- ( ph -> U. B = K ) |