Metamath Proof Explorer


Theorem pi1buni

Description: Another way to write the loop space base in terms of the base of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g
|- G = ( J pi1 Y )
pi1val.1
|- ( ph -> J e. ( TopOn ` X ) )
pi1val.2
|- ( ph -> Y e. X )
pi1val.o
|- O = ( J Om1 Y )
pi1bas.b
|- ( ph -> B = ( Base ` G ) )
pi1bas.k
|- ( ph -> K = ( Base ` O ) )
Assertion pi1buni
|- ( ph -> U. B = K )

Proof

Step Hyp Ref Expression
1 pi1val.g
 |-  G = ( J pi1 Y )
2 pi1val.1
 |-  ( ph -> J e. ( TopOn ` X ) )
3 pi1val.2
 |-  ( ph -> Y e. X )
4 pi1val.o
 |-  O = ( J Om1 Y )
5 pi1bas.b
 |-  ( ph -> B = ( Base ` G ) )
6 pi1bas.k
 |-  ( ph -> K = ( Base ` O ) )
7 1 2 3 4 5 6 pi1bas
 |-  ( ph -> B = ( K /. ( ~=ph ` J ) ) )
8 1 2 3 4 5 6 pi1blem
 |-  ( ph -> ( ( ( ~=ph ` J ) " K ) C_ K /\ K C_ ( II Cn J ) ) )
9 8 simpld
 |-  ( ph -> ( ( ~=ph ` J ) " K ) C_ K )
10 qsinxp
 |-  ( ( ( ~=ph ` J ) " K ) C_ K -> ( K /. ( ~=ph ` J ) ) = ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) )
11 9 10 syl
 |-  ( ph -> ( K /. ( ~=ph ` J ) ) = ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) )
12 7 11 eqtrd
 |-  ( ph -> B = ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) )
13 12 unieqd
 |-  ( ph -> U. B = U. ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) )
14 phtpcer
 |-  ( ~=ph ` J ) Er ( II Cn J )
15 14 a1i
 |-  ( ph -> ( ~=ph ` J ) Er ( II Cn J ) )
16 8 simprd
 |-  ( ph -> K C_ ( II Cn J ) )
17 15 16 erinxp
 |-  ( ph -> ( ( ~=ph ` J ) i^i ( K X. K ) ) Er K )
18 fvex
 |-  ( ~=ph ` J ) e. _V
19 18 inex1
 |-  ( ( ~=ph ` J ) i^i ( K X. K ) ) e. _V
20 19 a1i
 |-  ( ph -> ( ( ~=ph ` J ) i^i ( K X. K ) ) e. _V )
21 17 20 uniqs2
 |-  ( ph -> U. ( K /. ( ( ~=ph ` J ) i^i ( K X. K ) ) ) = K )
22 13 21 eqtrd
 |-  ( ph -> U. B = K )