Metamath Proof Explorer


Theorem pi1bas

Description: The base set of the fundamental group of a topological space at a given base point. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g
|- G = ( J pi1 Y )
pi1val.1
|- ( ph -> J e. ( TopOn ` X ) )
pi1val.2
|- ( ph -> Y e. X )
pi1val.o
|- O = ( J Om1 Y )
pi1bas.b
|- ( ph -> B = ( Base ` G ) )
pi1bas.k
|- ( ph -> K = ( Base ` O ) )
Assertion pi1bas
|- ( ph -> B = ( K /. ( ~=ph ` J ) ) )

Proof

Step Hyp Ref Expression
1 pi1val.g
 |-  G = ( J pi1 Y )
2 pi1val.1
 |-  ( ph -> J e. ( TopOn ` X ) )
3 pi1val.2
 |-  ( ph -> Y e. X )
4 pi1val.o
 |-  O = ( J Om1 Y )
5 pi1bas.b
 |-  ( ph -> B = ( Base ` G ) )
6 pi1bas.k
 |-  ( ph -> K = ( Base ` O ) )
7 1 2 3 4 pi1val
 |-  ( ph -> G = ( O /s ( ~=ph ` J ) ) )
8 eqidd
 |-  ( ph -> ( Base ` O ) = ( Base ` O ) )
9 fvexd
 |-  ( ph -> ( ~=ph ` J ) e. _V )
10 4 ovexi
 |-  O e. _V
11 10 a1i
 |-  ( ph -> O e. _V )
12 7 8 9 11 qusbas
 |-  ( ph -> ( ( Base ` O ) /. ( ~=ph ` J ) ) = ( Base ` G ) )
13 qseq1
 |-  ( K = ( Base ` O ) -> ( K /. ( ~=ph ` J ) ) = ( ( Base ` O ) /. ( ~=ph ` J ) ) )
14 6 13 syl
 |-  ( ph -> ( K /. ( ~=ph ` J ) ) = ( ( Base ` O ) /. ( ~=ph ` J ) ) )
15 12 14 5 3eqtr4rd
 |-  ( ph -> B = ( K /. ( ~=ph ` J ) ) )