| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1val.g |
|- G = ( J pi1 Y ) |
| 2 |
|
pi1val.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
pi1val.2 |
|- ( ph -> Y e. X ) |
| 4 |
|
pi1val.o |
|- O = ( J Om1 Y ) |
| 5 |
|
pi1bas.b |
|- ( ph -> B = ( Base ` G ) ) |
| 6 |
|
pi1bas.k |
|- ( ph -> K = ( Base ` O ) ) |
| 7 |
1 2 3 4
|
pi1val |
|- ( ph -> G = ( O /s ( ~=ph ` J ) ) ) |
| 8 |
|
eqidd |
|- ( ph -> ( Base ` O ) = ( Base ` O ) ) |
| 9 |
|
fvexd |
|- ( ph -> ( ~=ph ` J ) e. _V ) |
| 10 |
4
|
ovexi |
|- O e. _V |
| 11 |
10
|
a1i |
|- ( ph -> O e. _V ) |
| 12 |
7 8 9 11
|
qusbas |
|- ( ph -> ( ( Base ` O ) /. ( ~=ph ` J ) ) = ( Base ` G ) ) |
| 13 |
|
qseq1 |
|- ( K = ( Base ` O ) -> ( K /. ( ~=ph ` J ) ) = ( ( Base ` O ) /. ( ~=ph ` J ) ) ) |
| 14 |
6 13
|
syl |
|- ( ph -> ( K /. ( ~=ph ` J ) ) = ( ( Base ` O ) /. ( ~=ph ` J ) ) ) |
| 15 |
12 14 5
|
3eqtr4rd |
|- ( ph -> B = ( K /. ( ~=ph ` J ) ) ) |