| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1val.g |  |-  G = ( J pi1 Y ) | 
						
							| 2 |  | pi1val.1 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | pi1val.2 |  |-  ( ph -> Y e. X ) | 
						
							| 4 |  | pi1val.o |  |-  O = ( J Om1 Y ) | 
						
							| 5 |  | pi1bas.b |  |-  ( ph -> B = ( Base ` G ) ) | 
						
							| 6 |  | pi1bas.k |  |-  ( ph -> K = ( Base ` O ) ) | 
						
							| 7 | 1 2 3 4 | pi1val |  |-  ( ph -> G = ( O /s ( ~=ph ` J ) ) ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( Base ` O ) = ( Base ` O ) ) | 
						
							| 9 |  | fvexd |  |-  ( ph -> ( ~=ph ` J ) e. _V ) | 
						
							| 10 | 4 | ovexi |  |-  O e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ph -> O e. _V ) | 
						
							| 12 | 7 8 9 11 | qusbas |  |-  ( ph -> ( ( Base ` O ) /. ( ~=ph ` J ) ) = ( Base ` G ) ) | 
						
							| 13 |  | qseq1 |  |-  ( K = ( Base ` O ) -> ( K /. ( ~=ph ` J ) ) = ( ( Base ` O ) /. ( ~=ph ` J ) ) ) | 
						
							| 14 | 6 13 | syl |  |-  ( ph -> ( K /. ( ~=ph ` J ) ) = ( ( Base ` O ) /. ( ~=ph ` J ) ) ) | 
						
							| 15 | 12 14 5 | 3eqtr4rd |  |-  ( ph -> B = ( K /. ( ~=ph ` J ) ) ) |