| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1val.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
| 2 |
|
pi1val.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
pi1val.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 4 |
|
pi1val.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
| 5 |
|
pi1bas.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 6 |
|
pi1bas.k |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑂 ) ) |
| 7 |
1 2 3 4
|
pi1val |
⊢ ( 𝜑 → 𝐺 = ( 𝑂 /s ( ≃ph ‘ 𝐽 ) ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) ) |
| 9 |
|
fvexd |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 10 |
4
|
ovexi |
⊢ 𝑂 ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝑂 ∈ V ) |
| 12 |
7 8 9 11
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝑂 ) / ( ≃ph ‘ 𝐽 ) ) = ( Base ‘ 𝐺 ) ) |
| 13 |
|
qseq1 |
⊢ ( 𝐾 = ( Base ‘ 𝑂 ) → ( 𝐾 / ( ≃ph ‘ 𝐽 ) ) = ( ( Base ‘ 𝑂 ) / ( ≃ph ‘ 𝐽 ) ) ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → ( 𝐾 / ( ≃ph ‘ 𝐽 ) ) = ( ( Base ‘ 𝑂 ) / ( ≃ph ‘ 𝐽 ) ) ) |
| 15 |
12 14 5
|
3eqtr4rd |
⊢ ( 𝜑 → 𝐵 = ( 𝐾 / ( ≃ph ‘ 𝐽 ) ) ) |