| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1val.g | ⊢ 𝐺  =  ( 𝐽  π1  𝑌 ) | 
						
							| 2 |  | pi1val.1 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | pi1val.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 4 |  | pi1val.o | ⊢ 𝑂  =  ( 𝐽  Ω1  𝑌 ) | 
						
							| 5 |  | pi1bas.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 6 |  | pi1bas.k | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ 𝑂 ) ) | 
						
							| 7 | 1 2 3 4 | pi1val | ⊢ ( 𝜑  →  𝐺  =  ( 𝑂  /s  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑂 )  =  ( Base ‘ 𝑂 ) ) | 
						
							| 9 |  | fvexd | ⊢ ( 𝜑  →  (  ≃ph ‘ 𝐽 )  ∈  V ) | 
						
							| 10 | 4 | ovexi | ⊢ 𝑂  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  𝑂  ∈  V ) | 
						
							| 12 | 7 8 9 11 | qusbas | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑂 )  /  (  ≃ph ‘ 𝐽 ) )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 13 |  | qseq1 | ⊢ ( 𝐾  =  ( Base ‘ 𝑂 )  →  ( 𝐾  /  (  ≃ph ‘ 𝐽 ) )  =  ( ( Base ‘ 𝑂 )  /  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 14 | 6 13 | syl | ⊢ ( 𝜑  →  ( 𝐾  /  (  ≃ph ‘ 𝐽 ) )  =  ( ( Base ‘ 𝑂 )  /  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 15 | 12 14 5 | 3eqtr4rd | ⊢ ( 𝜑  →  𝐵  =  ( 𝐾  /  (  ≃ph ‘ 𝐽 ) ) ) |