Metamath Proof Explorer


Theorem pi1buni

Description: Another way to write the loop space base in terms of the base of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G=Jπ1Y
pi1val.1 φJTopOnX
pi1val.2 φYX
pi1val.o O=JΩ1Y
pi1bas.b φB=BaseG
pi1bas.k φK=BaseO
Assertion pi1buni φB=K

Proof

Step Hyp Ref Expression
1 pi1val.g G=Jπ1Y
2 pi1val.1 φJTopOnX
3 pi1val.2 φYX
4 pi1val.o O=JΩ1Y
5 pi1bas.b φB=BaseG
6 pi1bas.k φK=BaseO
7 1 2 3 4 5 6 pi1bas φB=K/phJ
8 1 2 3 4 5 6 pi1blem φphJKKKIICnJ
9 8 simpld φphJKK
10 qsinxp phJKKK/phJ=K/phJK×K
11 9 10 syl φK/phJ=K/phJK×K
12 7 11 eqtrd φB=K/phJK×K
13 12 unieqd φB=K/phJK×K
14 phtpcer phJErIICnJ
15 14 a1i φphJErIICnJ
16 8 simprd φKIICnJ
17 15 16 erinxp φphJK×KErK
18 fvex phJV
19 18 inex1 phJK×KV
20 19 a1i φphJK×KV
21 17 20 uniqs2 φK/phJK×K=K
22 13 21 eqtrd φB=K