Metamath Proof Explorer


Theorem pi1buni

Description: Another way to write the loop space base in terms of the base of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G = J π 1 Y
pi1val.1 φ J TopOn X
pi1val.2 φ Y X
pi1val.o O = J Ω 1 Y
pi1bas.b φ B = Base G
pi1bas.k φ K = Base O
Assertion pi1buni φ B = K

Proof

Step Hyp Ref Expression
1 pi1val.g G = J π 1 Y
2 pi1val.1 φ J TopOn X
3 pi1val.2 φ Y X
4 pi1val.o O = J Ω 1 Y
5 pi1bas.b φ B = Base G
6 pi1bas.k φ K = Base O
7 1 2 3 4 5 6 pi1bas φ B = K / ph J
8 1 2 3 4 5 6 pi1blem φ ph J K K K II Cn J
9 8 simpld φ ph J K K
10 qsinxp ph J K K K / ph J = K / ph J K × K
11 9 10 syl φ K / ph J = K / ph J K × K
12 7 11 eqtrd φ B = K / ph J K × K
13 12 unieqd φ B = K / ph J K × K
14 phtpcer ph J Er II Cn J
15 14 a1i φ ph J Er II Cn J
16 8 simprd φ K II Cn J
17 15 16 erinxp φ ph J K × K Er K
18 fvex ph J V
19 18 inex1 ph J K × K V
20 19 a1i φ ph J K × K V
21 17 20 uniqs2 φ K / ph J K × K = K
22 13 21 eqtrd φ B = K