Metamath Proof Explorer


Theorem pi1buni

Description: Another way to write the loop space base in terms of the base of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g 𝐺 = ( 𝐽 π1 𝑌 )
pi1val.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
pi1val.2 ( 𝜑𝑌𝑋 )
pi1val.o 𝑂 = ( 𝐽 Ω1 𝑌 )
pi1bas.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
pi1bas.k ( 𝜑𝐾 = ( Base ‘ 𝑂 ) )
Assertion pi1buni ( 𝜑 𝐵 = 𝐾 )

Proof

Step Hyp Ref Expression
1 pi1val.g 𝐺 = ( 𝐽 π1 𝑌 )
2 pi1val.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 pi1val.2 ( 𝜑𝑌𝑋 )
4 pi1val.o 𝑂 = ( 𝐽 Ω1 𝑌 )
5 pi1bas.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
6 pi1bas.k ( 𝜑𝐾 = ( Base ‘ 𝑂 ) )
7 1 2 3 4 5 6 pi1bas ( 𝜑𝐵 = ( 𝐾 / ( ≃ph𝐽 ) ) )
8 1 2 3 4 5 6 pi1blem ( 𝜑 → ( ( ( ≃ph𝐽 ) “ 𝐾 ) ⊆ 𝐾𝐾 ⊆ ( II Cn 𝐽 ) ) )
9 8 simpld ( 𝜑 → ( ( ≃ph𝐽 ) “ 𝐾 ) ⊆ 𝐾 )
10 qsinxp ( ( ( ≃ph𝐽 ) “ 𝐾 ) ⊆ 𝐾 → ( 𝐾 / ( ≃ph𝐽 ) ) = ( 𝐾 / ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) )
11 9 10 syl ( 𝜑 → ( 𝐾 / ( ≃ph𝐽 ) ) = ( 𝐾 / ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) )
12 7 11 eqtrd ( 𝜑𝐵 = ( 𝐾 / ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) )
13 12 unieqd ( 𝜑 𝐵 = ( 𝐾 / ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) )
14 phtpcer ( ≃ph𝐽 ) Er ( II Cn 𝐽 )
15 14 a1i ( 𝜑 → ( ≃ph𝐽 ) Er ( II Cn 𝐽 ) )
16 8 simprd ( 𝜑𝐾 ⊆ ( II Cn 𝐽 ) )
17 15 16 erinxp ( 𝜑 → ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) Er 𝐾 )
18 fvex ( ≃ph𝐽 ) ∈ V
19 18 inex1 ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ∈ V
20 19 a1i ( 𝜑 → ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ∈ V )
21 17 20 uniqs2 ( 𝜑 ( 𝐾 / ( ( ≃ph𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) = 𝐾 )
22 13 21 eqtrd ( 𝜑 𝐵 = 𝐾 )