Step |
Hyp |
Ref |
Expression |
1 |
|
pi1val.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
2 |
|
pi1val.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
pi1val.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
4 |
|
pi1val.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
5 |
|
pi1bas.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
6 |
|
pi1bas.k |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑂 ) ) |
7 |
1 2 3 4 5 6
|
pi1bas |
⊢ ( 𝜑 → 𝐵 = ( 𝐾 / ( ≃ph ‘ 𝐽 ) ) ) |
8 |
1 2 3 4 5 6
|
pi1blem |
⊢ ( 𝜑 → ( ( ( ≃ph ‘ 𝐽 ) “ 𝐾 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ( II Cn 𝐽 ) ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) “ 𝐾 ) ⊆ 𝐾 ) |
10 |
|
qsinxp |
⊢ ( ( ( ≃ph ‘ 𝐽 ) “ 𝐾 ) ⊆ 𝐾 → ( 𝐾 / ( ≃ph ‘ 𝐽 ) ) = ( 𝐾 / ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝐾 / ( ≃ph ‘ 𝐽 ) ) = ( 𝐾 / ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = ( 𝐾 / ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) ) |
13 |
12
|
unieqd |
⊢ ( 𝜑 → ∪ 𝐵 = ∪ ( 𝐾 / ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) ) |
14 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
16 |
8
|
simprd |
⊢ ( 𝜑 → 𝐾 ⊆ ( II Cn 𝐽 ) ) |
17 |
15 16
|
erinxp |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) Er 𝐾 ) |
18 |
|
fvex |
⊢ ( ≃ph ‘ 𝐽 ) ∈ V |
19 |
18
|
inex1 |
⊢ ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ∈ V ) |
21 |
17 20
|
uniqs2 |
⊢ ( 𝜑 → ∪ ( 𝐾 / ( ( ≃ph ‘ 𝐽 ) ∩ ( 𝐾 × 𝐾 ) ) ) = 𝐾 ) |
22 |
13 21
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝐵 = 𝐾 ) |