Metamath Proof Explorer


Theorem pi1bas2

Description: The base set of the fundamental group, written self-referentially. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G = J π 1 Y
pi1val.1 φ J TopOn X
pi1val.2 φ Y X
pi1bas2.b φ B = Base G
Assertion pi1bas2 φ B = B / ph J

Proof

Step Hyp Ref Expression
1 pi1val.g G = J π 1 Y
2 pi1val.1 φ J TopOn X
3 pi1val.2 φ Y X
4 pi1bas2.b φ B = Base G
5 eqid J Ω 1 Y = J Ω 1 Y
6 eqidd φ Base J Ω 1 Y = Base J Ω 1 Y
7 1 2 3 5 4 6 pi1buni φ B = Base J Ω 1 Y
8 1 2 3 5 4 7 pi1bas φ B = B / ph J