Metamath Proof Explorer


Theorem pi1bas2

Description: The base set of the fundamental group, written self-referentially. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G=Jπ1Y
pi1val.1 φJTopOnX
pi1val.2 φYX
pi1bas2.b φB=BaseG
Assertion pi1bas2 φB=B/phJ

Proof

Step Hyp Ref Expression
1 pi1val.g G=Jπ1Y
2 pi1val.1 φJTopOnX
3 pi1val.2 φYX
4 pi1bas2.b φB=BaseG
5 eqid JΩ1Y=JΩ1Y
6 eqidd φBaseJΩ1Y=BaseJΩ1Y
7 1 2 3 5 4 6 pi1buni φB=BaseJΩ1Y
8 1 2 3 5 4 7 pi1bas φB=B/phJ