Metamath Proof Explorer


Theorem pi1eluni

Description: Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G = J π 1 Y
pi1val.1 φ J TopOn X
pi1val.2 φ Y X
pi1bas2.b φ B = Base G
Assertion pi1eluni φ F B F II Cn J F 0 = Y F 1 = Y

Proof

Step Hyp Ref Expression
1 pi1val.g G = J π 1 Y
2 pi1val.1 φ J TopOn X
3 pi1val.2 φ Y X
4 pi1bas2.b φ B = Base G
5 eqid J Ω 1 Y = J Ω 1 Y
6 eqidd φ Base J Ω 1 Y = Base J Ω 1 Y
7 1 2 3 5 4 6 pi1buni φ B = Base J Ω 1 Y
8 5 2 3 7 om1elbas φ F B F II Cn J F 0 = Y F 1 = Y