Description: Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pi1val.g | ⊢ 𝐺 = ( 𝐽 π1 𝑌 ) | |
| pi1val.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| pi1val.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | ||
| pi1bas2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | ||
| Assertion | pi1eluni | ⊢ ( 𝜑 → ( 𝐹 ∈ ∪ 𝐵 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1val.g | ⊢ 𝐺 = ( 𝐽 π1 𝑌 ) | |
| 2 | pi1val.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | pi1val.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | |
| 4 | pi1bas2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 5 | eqid | ⊢ ( 𝐽 Ω1 𝑌 ) = ( 𝐽 Ω1 𝑌 ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) | |
| 7 | 1 2 3 5 4 6 | pi1buni | ⊢ ( 𝜑 → ∪ 𝐵 = ( Base ‘ ( 𝐽 Ω1 𝑌 ) ) ) |
| 8 | 5 2 3 7 | om1elbas | ⊢ ( 𝜑 → ( 𝐹 ∈ ∪ 𝐵 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |