Description: Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pi1val.g | |- G = ( J pi1 Y ) |
|
| pi1val.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| pi1val.2 | |- ( ph -> Y e. X ) |
||
| pi1bas2.b | |- ( ph -> B = ( Base ` G ) ) |
||
| Assertion | pi1eluni | |- ( ph -> ( F e. U. B <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pi1val.g | |- G = ( J pi1 Y ) |
|
| 2 | pi1val.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | pi1val.2 | |- ( ph -> Y e. X ) |
|
| 4 | pi1bas2.b | |- ( ph -> B = ( Base ` G ) ) |
|
| 5 | eqid | |- ( J Om1 Y ) = ( J Om1 Y ) |
|
| 6 | eqidd | |- ( ph -> ( Base ` ( J Om1 Y ) ) = ( Base ` ( J Om1 Y ) ) ) |
|
| 7 | 1 2 3 5 4 6 | pi1buni | |- ( ph -> U. B = ( Base ` ( J Om1 Y ) ) ) |
| 8 | 5 2 3 7 | om1elbas | |- ( ph -> ( F e. U. B <-> ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y /\ ( F ` 1 ) = Y ) ) ) |