| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pi1val.g | ⊢ 𝐺  =  ( 𝐽  π1  𝑌 ) | 
						
							| 2 |  | pi1val.1 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | pi1val.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 4 |  | pi1bas2.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 5 |  | pi1bas3.r | ⊢ 𝑅  =  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) | 
						
							| 6 | 1 2 3 4 | pi1bas2 | ⊢ ( 𝜑  →  𝐵  =  ( ∪  𝐵  /  (  ≃ph ‘ 𝐽 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝐽  Ω1  𝑌 )  =  ( 𝐽  Ω1  𝑌 ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( 𝐽  Ω1  𝑌 ) )  =  ( Base ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 9 | 1 2 3 7 4 8 | pi1buni | ⊢ ( 𝜑  →  ∪  𝐵  =  ( Base ‘ ( 𝐽  Ω1  𝑌 ) ) ) | 
						
							| 10 | 1 2 3 7 4 9 | pi1blem | ⊢ ( 𝜑  →  ( ( (  ≃ph ‘ 𝐽 )  “  ∪  𝐵 )  ⊆  ∪  𝐵  ∧  ∪  𝐵  ⊆  ( II  Cn  𝐽 ) ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( 𝜑  →  ( (  ≃ph ‘ 𝐽 )  “  ∪  𝐵 )  ⊆  ∪  𝐵 ) | 
						
							| 12 |  | qsinxp | ⊢ ( ( (  ≃ph ‘ 𝐽 )  “  ∪  𝐵 )  ⊆  ∪  𝐵  →  ( ∪  𝐵  /  (  ≃ph ‘ 𝐽 ) )  =  ( ∪  𝐵  /  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ( ∪  𝐵  /  (  ≃ph ‘ 𝐽 ) )  =  ( ∪  𝐵  /  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) ) | 
						
							| 14 | 6 13 | eqtrd | ⊢ ( 𝜑  →  𝐵  =  ( ∪  𝐵  /  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) ) | 
						
							| 15 |  | qseq2 | ⊢ ( 𝑅  =  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) )  →  ( ∪  𝐵  /  𝑅 )  =  ( ∪  𝐵  /  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) ) | 
						
							| 16 | 5 15 | ax-mp | ⊢ ( ∪  𝐵  /  𝑅 )  =  ( ∪  𝐵  /  ( (  ≃ph ‘ 𝐽 )  ∩  ( ∪  𝐵  ×  ∪  𝐵 ) ) ) | 
						
							| 17 | 14 16 | eqtr4di | ⊢ ( 𝜑  →  𝐵  =  ( ∪  𝐵  /  𝑅 ) ) |