Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qseq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 / 𝐴 ) = ( 𝐶 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq2 | ⊢ ( 𝐴 = 𝐵 → [ 𝑥 ] 𝐴 = [ 𝑥 ] 𝐵 ) | |
| 2 | 1 | eqeq2d | ⊢ ( 𝐴 = 𝐵 → ( 𝑦 = [ 𝑥 ] 𝐴 ↔ 𝑦 = [ 𝑥 ] 𝐵 ) ) |
| 3 | 2 | rexbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐶 𝑦 = [ 𝑥 ] 𝐴 ↔ ∃ 𝑥 ∈ 𝐶 𝑦 = [ 𝑥 ] 𝐵 ) ) |
| 4 | 3 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = [ 𝑥 ] 𝐴 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = [ 𝑥 ] 𝐵 } ) |
| 5 | df-qs | ⊢ ( 𝐶 / 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = [ 𝑥 ] 𝐴 } | |
| 6 | df-qs | ⊢ ( 𝐶 / 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = [ 𝑥 ] 𝐵 } | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 / 𝐴 ) = ( 𝐶 / 𝐵 ) ) |