Step |
Hyp |
Ref |
Expression |
1 |
|
pi1val.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
2 |
|
pi1val.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
pi1val.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
4 |
|
pi1bas2.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
5 |
|
pi1bas3.r |
⊢ 𝑅 = ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) |
6 |
|
pi1cpbl.o |
⊢ 𝑂 = ( 𝐽 Ω1 𝑌 ) |
7 |
|
pi1cpbl.a |
⊢ + = ( +g ‘ 𝑂 ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑌 ∈ 𝑋 ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) ) |
12 |
1 8 9 6 10 11
|
pi1buni |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ∪ 𝐵 = ( Base ‘ 𝑂 ) ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑀 𝑅 𝑁 ) |
14 |
5
|
breqi |
⊢ ( 𝑀 𝑅 𝑁 ↔ 𝑀 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑁 ) |
15 |
|
brinxp2 |
⊢ ( 𝑀 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑁 ↔ ( ( 𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵 ) ∧ 𝑀 ( ≃ph ‘ 𝐽 ) 𝑁 ) ) |
16 |
14 15
|
bitri |
⊢ ( 𝑀 𝑅 𝑁 ↔ ( ( 𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵 ) ∧ 𝑀 ( ≃ph ‘ 𝐽 ) 𝑁 ) ) |
17 |
13 16
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( ( 𝑀 ∈ ∪ 𝐵 ∧ 𝑁 ∈ ∪ 𝐵 ) ∧ 𝑀 ( ≃ph ‘ 𝐽 ) 𝑁 ) ) |
18 |
17
|
simplld |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑀 ∈ ∪ 𝐵 ) |
19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑃 𝑅 𝑄 ) |
20 |
5
|
breqi |
⊢ ( 𝑃 𝑅 𝑄 ↔ 𝑃 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑄 ) |
21 |
|
brinxp2 |
⊢ ( 𝑃 ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) 𝑄 ↔ ( ( 𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵 ) ∧ 𝑃 ( ≃ph ‘ 𝐽 ) 𝑄 ) ) |
22 |
20 21
|
bitri |
⊢ ( 𝑃 𝑅 𝑄 ↔ ( ( 𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵 ) ∧ 𝑃 ( ≃ph ‘ 𝐽 ) 𝑄 ) ) |
23 |
19 22
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( ( 𝑃 ∈ ∪ 𝐵 ∧ 𝑄 ∈ ∪ 𝐵 ) ∧ 𝑃 ( ≃ph ‘ 𝐽 ) 𝑄 ) ) |
24 |
23
|
simplld |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑃 ∈ ∪ 𝐵 ) |
25 |
6 8 9 12 18 24
|
om1addcl |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ∈ ∪ 𝐵 ) |
26 |
17
|
simplrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑁 ∈ ∪ 𝐵 ) |
27 |
23
|
simplrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑄 ∈ ∪ 𝐵 ) |
28 |
6 8 9 12 26 27
|
om1addcl |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ∈ ∪ 𝐵 ) |
29 |
1 8 9 10
|
pi1eluni |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ∈ ∪ 𝐵 ↔ ( 𝑀 ∈ ( II Cn 𝐽 ) ∧ ( 𝑀 ‘ 0 ) = 𝑌 ∧ ( 𝑀 ‘ 1 ) = 𝑌 ) ) ) |
30 |
18 29
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ∈ ( II Cn 𝐽 ) ∧ ( 𝑀 ‘ 0 ) = 𝑌 ∧ ( 𝑀 ‘ 1 ) = 𝑌 ) ) |
31 |
30
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ‘ 1 ) = 𝑌 ) |
32 |
1 8 9 10
|
pi1eluni |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑃 ∈ ∪ 𝐵 ↔ ( 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( 𝑃 ‘ 0 ) = 𝑌 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) ) ) |
33 |
24 32
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( 𝑃 ‘ 0 ) = 𝑌 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) ) |
34 |
33
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑃 ‘ 0 ) = 𝑌 ) |
35 |
31 34
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ‘ 1 ) = ( 𝑃 ‘ 0 ) ) |
36 |
17
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑀 ( ≃ph ‘ 𝐽 ) 𝑁 ) |
37 |
23
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → 𝑃 ( ≃ph ‘ 𝐽 ) 𝑄 ) |
38 |
35 36 37
|
pcohtpy |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ( ≃ph ‘ 𝐽 ) ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ) |
39 |
5
|
breqi |
⊢ ( ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) 𝑅 ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ↔ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ) |
40 |
|
brinxp2 |
⊢ ( ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ( ( ≃ph ‘ 𝐽 ) ∩ ( ∪ 𝐵 × ∪ 𝐵 ) ) ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ↔ ( ( ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ∈ ∪ 𝐵 ∧ ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ∈ ∪ 𝐵 ) ∧ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ( ≃ph ‘ 𝐽 ) ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ) ) |
41 |
39 40
|
bitri |
⊢ ( ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) 𝑅 ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ↔ ( ( ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ∈ ∪ 𝐵 ∧ ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ∈ ∪ 𝐵 ) ∧ ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) ( ≃ph ‘ 𝐽 ) ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ) ) |
42 |
25 28 38 41
|
syl21anbrc |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) 𝑅 ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) ) |
43 |
6 8 9
|
om1plusg |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( *𝑝 ‘ 𝐽 ) = ( +g ‘ 𝑂 ) ) |
44 |
43 7
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( *𝑝 ‘ 𝐽 ) = + ) |
45 |
44
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 ( *𝑝 ‘ 𝐽 ) 𝑃 ) = ( 𝑀 + 𝑃 ) ) |
46 |
44
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑁 ( *𝑝 ‘ 𝐽 ) 𝑄 ) = ( 𝑁 + 𝑄 ) ) |
47 |
42 45 46
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) ) → ( 𝑀 + 𝑃 ) 𝑅 ( 𝑁 + 𝑄 ) ) |
48 |
47
|
ex |
⊢ ( 𝜑 → ( ( 𝑀 𝑅 𝑁 ∧ 𝑃 𝑅 𝑄 ) → ( 𝑀 + 𝑃 ) 𝑅 ( 𝑁 + 𝑄 ) ) ) |