| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpi1.g |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
| 2 |
|
elpi1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
elpi1.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
elpi1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 5 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 6 |
1 3 4 5
|
pi1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) |
| 7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) ) |
| 8 |
|
elex |
⊢ ( 𝐹 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) → 𝐹 ∈ V ) |
| 9 |
|
id |
⊢ ( 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) → 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) |
| 10 |
|
fvex |
⊢ ( ≃ph ‘ 𝐽 ) ∈ V |
| 11 |
|
ecexg |
⊢ ( ( ≃ph ‘ 𝐽 ) ∈ V → [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ∈ V ) |
| 12 |
10 11
|
ax-mp |
⊢ [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ∈ V |
| 13 |
9 12
|
eqeltrdi |
⊢ ( 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) → 𝐹 ∈ V ) |
| 14 |
13
|
rexlimivw |
⊢ ( ∃ 𝑓 ∈ ∪ 𝐵 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) → 𝐹 ∈ V ) |
| 15 |
|
elqsg |
⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ↔ ∃ 𝑓 ∈ ∪ 𝐵 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) |
| 16 |
8 14 15
|
pm5.21nii |
⊢ ( 𝐹 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ↔ ∃ 𝑓 ∈ ∪ 𝐵 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) |
| 17 |
1 3 4 5
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑓 ∈ ∪ 𝐵 ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) ) |
| 18 |
|
3anass |
⊢ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) ) |
| 19 |
17 18
|
bitrdi |
⊢ ( 𝜑 → ( 𝑓 ∈ ∪ 𝐵 ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) ) ) |
| 20 |
19
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ∪ 𝐵 ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ↔ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
| 21 |
|
anass |
⊢ ( ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ) ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
| 22 |
20 21
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ∪ 𝐵 ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) ) |
| 23 |
22
|
rexbidv2 |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ∪ 𝐵 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
| 24 |
16 23
|
bitrid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |
| 25 |
7 24
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐵 ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( ( 𝑓 ‘ 0 ) = 𝑌 ∧ ( 𝑓 ‘ 1 ) = 𝑌 ) ∧ 𝐹 = [ 𝑓 ] ( ≃ph ‘ 𝐽 ) ) ) ) |