Step |
Hyp |
Ref |
Expression |
1 |
|
elpi1.g |
|- G = ( J pi1 Y ) |
2 |
|
elpi1.b |
|- B = ( Base ` G ) |
3 |
|
elpi1.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
4 |
|
elpi1.2 |
|- ( ph -> Y e. X ) |
5 |
2
|
a1i |
|- ( ph -> B = ( Base ` G ) ) |
6 |
1 3 4 5
|
pi1bas2 |
|- ( ph -> B = ( U. B /. ( ~=ph ` J ) ) ) |
7 |
6
|
eleq2d |
|- ( ph -> ( F e. B <-> F e. ( U. B /. ( ~=ph ` J ) ) ) ) |
8 |
|
elex |
|- ( F e. ( U. B /. ( ~=ph ` J ) ) -> F e. _V ) |
9 |
|
id |
|- ( F = [ f ] ( ~=ph ` J ) -> F = [ f ] ( ~=ph ` J ) ) |
10 |
|
fvex |
|- ( ~=ph ` J ) e. _V |
11 |
|
ecexg |
|- ( ( ~=ph ` J ) e. _V -> [ f ] ( ~=ph ` J ) e. _V ) |
12 |
10 11
|
ax-mp |
|- [ f ] ( ~=ph ` J ) e. _V |
13 |
9 12
|
eqeltrdi |
|- ( F = [ f ] ( ~=ph ` J ) -> F e. _V ) |
14 |
13
|
rexlimivw |
|- ( E. f e. U. B F = [ f ] ( ~=ph ` J ) -> F e. _V ) |
15 |
|
elqsg |
|- ( F e. _V -> ( F e. ( U. B /. ( ~=ph ` J ) ) <-> E. f e. U. B F = [ f ] ( ~=ph ` J ) ) ) |
16 |
8 14 15
|
pm5.21nii |
|- ( F e. ( U. B /. ( ~=ph ` J ) ) <-> E. f e. U. B F = [ f ] ( ~=ph ` J ) ) |
17 |
1 3 4 5
|
pi1eluni |
|- ( ph -> ( f e. U. B <-> ( f e. ( II Cn J ) /\ ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) ) |
18 |
|
3anass |
|- ( ( f e. ( II Cn J ) /\ ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) <-> ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) ) |
19 |
17 18
|
bitrdi |
|- ( ph -> ( f e. U. B <-> ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) ) ) |
20 |
19
|
anbi1d |
|- ( ph -> ( ( f e. U. B /\ F = [ f ] ( ~=ph ` J ) ) <-> ( ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) /\ F = [ f ] ( ~=ph ` J ) ) ) ) |
21 |
|
anass |
|- ( ( ( f e. ( II Cn J ) /\ ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) ) /\ F = [ f ] ( ~=ph ` J ) ) <-> ( f e. ( II Cn J ) /\ ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ F = [ f ] ( ~=ph ` J ) ) ) ) |
22 |
20 21
|
bitrdi |
|- ( ph -> ( ( f e. U. B /\ F = [ f ] ( ~=ph ` J ) ) <-> ( f e. ( II Cn J ) /\ ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ F = [ f ] ( ~=ph ` J ) ) ) ) ) |
23 |
22
|
rexbidv2 |
|- ( ph -> ( E. f e. U. B F = [ f ] ( ~=ph ` J ) <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ F = [ f ] ( ~=ph ` J ) ) ) ) |
24 |
16 23
|
syl5bb |
|- ( ph -> ( F e. ( U. B /. ( ~=ph ` J ) ) <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ F = [ f ] ( ~=ph ` J ) ) ) ) |
25 |
7 24
|
bitrd |
|- ( ph -> ( F e. B <-> E. f e. ( II Cn J ) ( ( ( f ` 0 ) = Y /\ ( f ` 1 ) = Y ) /\ F = [ f ] ( ~=ph ` J ) ) ) ) |