Step |
Hyp |
Ref |
Expression |
1 |
|
pi1val.g |
|- G = ( J pi1 Y ) |
2 |
|
pi1val.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
3 |
|
pi1val.2 |
|- ( ph -> Y e. X ) |
4 |
|
pi1bas2.b |
|- ( ph -> B = ( Base ` G ) ) |
5 |
|
pi1bas3.r |
|- R = ( ( ~=ph ` J ) i^i ( U. B X. U. B ) ) |
6 |
|
pi1cpbl.o |
|- O = ( J Om1 Y ) |
7 |
|
pi1cpbl.a |
|- .+ = ( +g ` O ) |
8 |
2
|
adantr |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> J e. ( TopOn ` X ) ) |
9 |
3
|
adantr |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> Y e. X ) |
10 |
4
|
adantr |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> B = ( Base ` G ) ) |
11 |
|
eqidd |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( Base ` O ) = ( Base ` O ) ) |
12 |
1 8 9 6 10 11
|
pi1buni |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> U. B = ( Base ` O ) ) |
13 |
|
simprl |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> M R N ) |
14 |
5
|
breqi |
|- ( M R N <-> M ( ( ~=ph ` J ) i^i ( U. B X. U. B ) ) N ) |
15 |
|
brinxp2 |
|- ( M ( ( ~=ph ` J ) i^i ( U. B X. U. B ) ) N <-> ( ( M e. U. B /\ N e. U. B ) /\ M ( ~=ph ` J ) N ) ) |
16 |
14 15
|
bitri |
|- ( M R N <-> ( ( M e. U. B /\ N e. U. B ) /\ M ( ~=ph ` J ) N ) ) |
17 |
13 16
|
sylib |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( ( M e. U. B /\ N e. U. B ) /\ M ( ~=ph ` J ) N ) ) |
18 |
17
|
simplld |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> M e. U. B ) |
19 |
|
simprr |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> P R Q ) |
20 |
5
|
breqi |
|- ( P R Q <-> P ( ( ~=ph ` J ) i^i ( U. B X. U. B ) ) Q ) |
21 |
|
brinxp2 |
|- ( P ( ( ~=ph ` J ) i^i ( U. B X. U. B ) ) Q <-> ( ( P e. U. B /\ Q e. U. B ) /\ P ( ~=ph ` J ) Q ) ) |
22 |
20 21
|
bitri |
|- ( P R Q <-> ( ( P e. U. B /\ Q e. U. B ) /\ P ( ~=ph ` J ) Q ) ) |
23 |
19 22
|
sylib |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( ( P e. U. B /\ Q e. U. B ) /\ P ( ~=ph ` J ) Q ) ) |
24 |
23
|
simplld |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> P e. U. B ) |
25 |
6 8 9 12 18 24
|
om1addcl |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M ( *p ` J ) P ) e. U. B ) |
26 |
17
|
simplrd |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> N e. U. B ) |
27 |
23
|
simplrd |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> Q e. U. B ) |
28 |
6 8 9 12 26 27
|
om1addcl |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( N ( *p ` J ) Q ) e. U. B ) |
29 |
1 8 9 10
|
pi1eluni |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M e. U. B <-> ( M e. ( II Cn J ) /\ ( M ` 0 ) = Y /\ ( M ` 1 ) = Y ) ) ) |
30 |
18 29
|
mpbid |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M e. ( II Cn J ) /\ ( M ` 0 ) = Y /\ ( M ` 1 ) = Y ) ) |
31 |
30
|
simp3d |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M ` 1 ) = Y ) |
32 |
1 8 9 10
|
pi1eluni |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( P e. U. B <-> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) ) ) |
33 |
24 32
|
mpbid |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) ) |
34 |
33
|
simp2d |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( P ` 0 ) = Y ) |
35 |
31 34
|
eqtr4d |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M ` 1 ) = ( P ` 0 ) ) |
36 |
17
|
simprd |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> M ( ~=ph ` J ) N ) |
37 |
23
|
simprd |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> P ( ~=ph ` J ) Q ) |
38 |
35 36 37
|
pcohtpy |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M ( *p ` J ) P ) ( ~=ph ` J ) ( N ( *p ` J ) Q ) ) |
39 |
5
|
breqi |
|- ( ( M ( *p ` J ) P ) R ( N ( *p ` J ) Q ) <-> ( M ( *p ` J ) P ) ( ( ~=ph ` J ) i^i ( U. B X. U. B ) ) ( N ( *p ` J ) Q ) ) |
40 |
|
brinxp2 |
|- ( ( M ( *p ` J ) P ) ( ( ~=ph ` J ) i^i ( U. B X. U. B ) ) ( N ( *p ` J ) Q ) <-> ( ( ( M ( *p ` J ) P ) e. U. B /\ ( N ( *p ` J ) Q ) e. U. B ) /\ ( M ( *p ` J ) P ) ( ~=ph ` J ) ( N ( *p ` J ) Q ) ) ) |
41 |
39 40
|
bitri |
|- ( ( M ( *p ` J ) P ) R ( N ( *p ` J ) Q ) <-> ( ( ( M ( *p ` J ) P ) e. U. B /\ ( N ( *p ` J ) Q ) e. U. B ) /\ ( M ( *p ` J ) P ) ( ~=ph ` J ) ( N ( *p ` J ) Q ) ) ) |
42 |
25 28 38 41
|
syl21anbrc |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M ( *p ` J ) P ) R ( N ( *p ` J ) Q ) ) |
43 |
6 8 9
|
om1plusg |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( *p ` J ) = ( +g ` O ) ) |
44 |
43 7
|
eqtr4di |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( *p ` J ) = .+ ) |
45 |
44
|
oveqd |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M ( *p ` J ) P ) = ( M .+ P ) ) |
46 |
44
|
oveqd |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( N ( *p ` J ) Q ) = ( N .+ Q ) ) |
47 |
42 45 46
|
3brtr3d |
|- ( ( ph /\ ( M R N /\ P R Q ) ) -> ( M .+ P ) R ( N .+ Q ) ) |
48 |
47
|
ex |
|- ( ph -> ( ( M R N /\ P R Q ) -> ( M .+ P ) R ( N .+ Q ) ) ) |