Metamath Proof Explorer


Theorem pi1cpbl

Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G = J π 1 Y
pi1val.1 φ J TopOn X
pi1val.2 φ Y X
pi1bas2.b φ B = Base G
pi1bas3.r R = ph J B × B
pi1cpbl.o O = J Ω 1 Y
pi1cpbl.a + ˙ = + O
Assertion pi1cpbl φ M R N P R Q M + ˙ P R N + ˙ Q

Proof

Step Hyp Ref Expression
1 pi1val.g G = J π 1 Y
2 pi1val.1 φ J TopOn X
3 pi1val.2 φ Y X
4 pi1bas2.b φ B = Base G
5 pi1bas3.r R = ph J B × B
6 pi1cpbl.o O = J Ω 1 Y
7 pi1cpbl.a + ˙ = + O
8 2 adantr φ M R N P R Q J TopOn X
9 3 adantr φ M R N P R Q Y X
10 4 adantr φ M R N P R Q B = Base G
11 eqidd φ M R N P R Q Base O = Base O
12 1 8 9 6 10 11 pi1buni φ M R N P R Q B = Base O
13 simprl φ M R N P R Q M R N
14 5 breqi M R N M ph J B × B N
15 brinxp2 M ph J B × B N M B N B M ph J N
16 14 15 bitri M R N M B N B M ph J N
17 13 16 sylib φ M R N P R Q M B N B M ph J N
18 17 simplld φ M R N P R Q M B
19 simprr φ M R N P R Q P R Q
20 5 breqi P R Q P ph J B × B Q
21 brinxp2 P ph J B × B Q P B Q B P ph J Q
22 20 21 bitri P R Q P B Q B P ph J Q
23 19 22 sylib φ M R N P R Q P B Q B P ph J Q
24 23 simplld φ M R N P R Q P B
25 6 8 9 12 18 24 om1addcl φ M R N P R Q M * 𝑝 J P B
26 17 simplrd φ M R N P R Q N B
27 23 simplrd φ M R N P R Q Q B
28 6 8 9 12 26 27 om1addcl φ M R N P R Q N * 𝑝 J Q B
29 1 8 9 10 pi1eluni φ M R N P R Q M B M II Cn J M 0 = Y M 1 = Y
30 18 29 mpbid φ M R N P R Q M II Cn J M 0 = Y M 1 = Y
31 30 simp3d φ M R N P R Q M 1 = Y
32 1 8 9 10 pi1eluni φ M R N P R Q P B P II Cn J P 0 = Y P 1 = Y
33 24 32 mpbid φ M R N P R Q P II Cn J P 0 = Y P 1 = Y
34 33 simp2d φ M R N P R Q P 0 = Y
35 31 34 eqtr4d φ M R N P R Q M 1 = P 0
36 17 simprd φ M R N P R Q M ph J N
37 23 simprd φ M R N P R Q P ph J Q
38 35 36 37 pcohtpy φ M R N P R Q M * 𝑝 J P ph J N * 𝑝 J Q
39 5 breqi M * 𝑝 J P R N * 𝑝 J Q M * 𝑝 J P ph J B × B N * 𝑝 J Q
40 brinxp2 M * 𝑝 J P ph J B × B N * 𝑝 J Q M * 𝑝 J P B N * 𝑝 J Q B M * 𝑝 J P ph J N * 𝑝 J Q
41 39 40 bitri M * 𝑝 J P R N * 𝑝 J Q M * 𝑝 J P B N * 𝑝 J Q B M * 𝑝 J P ph J N * 𝑝 J Q
42 25 28 38 41 syl21anbrc φ M R N P R Q M * 𝑝 J P R N * 𝑝 J Q
43 6 8 9 om1plusg φ M R N P R Q * 𝑝 J = + O
44 43 7 eqtr4di φ M R N P R Q * 𝑝 J = + ˙
45 44 oveqd φ M R N P R Q M * 𝑝 J P = M + ˙ P
46 44 oveqd φ M R N P R Q N * 𝑝 J Q = N + ˙ Q
47 42 45 46 3brtr3d φ M R N P R Q M + ˙ P R N + ˙ Q
48 47 ex φ M R N P R Q M + ˙ P R N + ˙ Q