Metamath Proof Explorer


Theorem pi1cpbl

Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G=Jπ1Y
pi1val.1 φJTopOnX
pi1val.2 φYX
pi1bas2.b φB=BaseG
pi1bas3.r R=phJB×B
pi1cpbl.o O=JΩ1Y
pi1cpbl.a +˙=+O
Assertion pi1cpbl φMRNPRQM+˙PRN+˙Q

Proof

Step Hyp Ref Expression
1 pi1val.g G=Jπ1Y
2 pi1val.1 φJTopOnX
3 pi1val.2 φYX
4 pi1bas2.b φB=BaseG
5 pi1bas3.r R=phJB×B
6 pi1cpbl.o O=JΩ1Y
7 pi1cpbl.a +˙=+O
8 2 adantr φMRNPRQJTopOnX
9 3 adantr φMRNPRQYX
10 4 adantr φMRNPRQB=BaseG
11 eqidd φMRNPRQBaseO=BaseO
12 1 8 9 6 10 11 pi1buni φMRNPRQB=BaseO
13 simprl φMRNPRQMRN
14 5 breqi MRNMphJB×BN
15 brinxp2 MphJB×BNMBNBMphJN
16 14 15 bitri MRNMBNBMphJN
17 13 16 sylib φMRNPRQMBNBMphJN
18 17 simplld φMRNPRQMB
19 simprr φMRNPRQPRQ
20 5 breqi PRQPphJB×BQ
21 brinxp2 PphJB×BQPBQBPphJQ
22 20 21 bitri PRQPBQBPphJQ
23 19 22 sylib φMRNPRQPBQBPphJQ
24 23 simplld φMRNPRQPB
25 6 8 9 12 18 24 om1addcl φMRNPRQM*𝑝JPB
26 17 simplrd φMRNPRQNB
27 23 simplrd φMRNPRQQB
28 6 8 9 12 26 27 om1addcl φMRNPRQN*𝑝JQB
29 1 8 9 10 pi1eluni φMRNPRQMBMIICnJM0=YM1=Y
30 18 29 mpbid φMRNPRQMIICnJM0=YM1=Y
31 30 simp3d φMRNPRQM1=Y
32 1 8 9 10 pi1eluni φMRNPRQPBPIICnJP0=YP1=Y
33 24 32 mpbid φMRNPRQPIICnJP0=YP1=Y
34 33 simp2d φMRNPRQP0=Y
35 31 34 eqtr4d φMRNPRQM1=P0
36 17 simprd φMRNPRQMphJN
37 23 simprd φMRNPRQPphJQ
38 35 36 37 pcohtpy φMRNPRQM*𝑝JPphJN*𝑝JQ
39 5 breqi M*𝑝JPRN*𝑝JQM*𝑝JPphJB×BN*𝑝JQ
40 brinxp2 M*𝑝JPphJB×BN*𝑝JQM*𝑝JPBN*𝑝JQBM*𝑝JPphJN*𝑝JQ
41 39 40 bitri M*𝑝JPRN*𝑝JQM*𝑝JPBN*𝑝JQBM*𝑝JPphJN*𝑝JQ
42 25 28 38 41 syl21anbrc φMRNPRQM*𝑝JPRN*𝑝JQ
43 6 8 9 om1plusg φMRNPRQ*𝑝J=+O
44 43 7 eqtr4di φMRNPRQ*𝑝J=+˙
45 44 oveqd φMRNPRQM*𝑝JP=M+˙P
46 44 oveqd φMRNPRQN*𝑝JQ=N+˙Q
47 42 45 46 3brtr3d φMRNPRQM+˙PRN+˙Q
48 47 ex φMRNPRQM+˙PRN+˙Q