Metamath Proof Explorer


Theorem om1plusg

Description: The group operation (which isn't much more than a magma) of the loop space. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses om1bas.o O=JΩ1Y
om1bas.j φJTopOnX
om1bas.y φYX
Assertion om1plusg φ*𝑝J=+O

Proof

Step Hyp Ref Expression
1 om1bas.o O=JΩ1Y
2 om1bas.j φJTopOnX
3 om1bas.y φYX
4 fvex *𝑝JV
5 eqid BasendxBaseO+ndx*𝑝JTopSetndxJ^koII=BasendxBaseO+ndx*𝑝JTopSetndxJ^koII
6 5 topgrpplusg *𝑝JV*𝑝J=+BasendxBaseO+ndx*𝑝JTopSetndxJ^koII
7 4 6 ax-mp *𝑝J=+BasendxBaseO+ndx*𝑝JTopSetndxJ^koII
8 eqidd φBaseO=BaseO
9 1 2 3 8 om1bas φBaseO=fIICnJ|f0=Yf1=Y
10 eqidd φ*𝑝J=*𝑝J
11 eqidd φJ^koII=J^koII
12 1 9 10 11 2 3 om1val φO=BasendxBaseO+ndx*𝑝JTopSetndxJ^koII
13 12 fveq2d φ+O=+BasendxBaseO+ndx*𝑝JTopSetndxJ^koII
14 7 13 eqtr4id φ*𝑝J=+O