Database
BASIC TOPOLOGY
Metric spaces
The fundamental group
pi1bas3
Next ⟩
pi1cpbl
Metamath Proof Explorer
Ascii
Unicode
Theorem
pi1bas3
Description:
The base set of the fundamental group.
(Contributed by
Mario Carneiro
, 10-Jul-2015)
Ref
Expression
Hypotheses
pi1val.g
⊢
G
=
J
π
1
Y
pi1val.1
⊢
φ
→
J
∈
TopOn
⁡
X
pi1val.2
⊢
φ
→
Y
∈
X
pi1bas2.b
⊢
φ
→
B
=
Base
G
pi1bas3.r
⊢
R
=
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
Assertion
pi1bas3
⊢
φ
→
B
=
⋃
B
/
R
Proof
Step
Hyp
Ref
Expression
1
pi1val.g
⊢
G
=
J
π
1
Y
2
pi1val.1
⊢
φ
→
J
∈
TopOn
⁡
X
3
pi1val.2
⊢
φ
→
Y
∈
X
4
pi1bas2.b
⊢
φ
→
B
=
Base
G
5
pi1bas3.r
⊢
R
=
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
6
1
2
3
4
pi1bas2
⊢
φ
→
B
=
⋃
B
/
≃
ph
⁡
J
7
eqid
⊢
J
Ω
1
Y
=
J
Ω
1
Y
8
eqidd
⊢
φ
→
Base
J
Ω
1
Y
=
Base
J
Ω
1
Y
9
1
2
3
7
4
8
pi1buni
⊢
φ
→
⋃
B
=
Base
J
Ω
1
Y
10
1
2
3
7
4
9
pi1blem
⊢
φ
→
≃
ph
⁡
J
⋃
B
⊆
⋃
B
∧
⋃
B
⊆
II
Cn
J
11
10
simpld
⊢
φ
→
≃
ph
⁡
J
⋃
B
⊆
⋃
B
12
qsinxp
⊢
≃
ph
⁡
J
⋃
B
⊆
⋃
B
→
⋃
B
/
≃
ph
⁡
J
=
⋃
B
/
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
13
11
12
syl
⊢
φ
→
⋃
B
/
≃
ph
⁡
J
=
⋃
B
/
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
14
6
13
eqtrd
⊢
φ
→
B
=
⋃
B
/
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
15
qseq2
⊢
R
=
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
→
⋃
B
/
R
=
⋃
B
/
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
16
5
15
ax-mp
⊢
⋃
B
/
R
=
⋃
B
/
≃
ph
⁡
J
∩
⋃
B
×
⋃
B
17
14
16
eqtr4di
⊢
φ
→
B
=
⋃
B
/
R