Metamath Proof Explorer


Theorem pi1bas3

Description: The base set of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses pi1val.g G=Jπ1Y
pi1val.1 φJTopOnX
pi1val.2 φYX
pi1bas2.b φB=BaseG
pi1bas3.r R=phJB×B
Assertion pi1bas3 φB=B/R

Proof

Step Hyp Ref Expression
1 pi1val.g G=Jπ1Y
2 pi1val.1 φJTopOnX
3 pi1val.2 φYX
4 pi1bas2.b φB=BaseG
5 pi1bas3.r R=phJB×B
6 1 2 3 4 pi1bas2 φB=B/phJ
7 eqid JΩ1Y=JΩ1Y
8 eqidd φBaseJΩ1Y=BaseJΩ1Y
9 1 2 3 7 4 8 pi1buni φB=BaseJΩ1Y
10 1 2 3 7 4 9 pi1blem φphJBBBIICnJ
11 10 simpld φphJBB
12 qsinxp phJBBB/phJ=B/phJB×B
13 11 12 syl φB/phJ=B/phJB×B
14 6 13 eqtrd φB=B/phJB×B
15 qseq2 R=phJB×BB/R=B/phJB×B
16 5 15 ax-mp B/R=B/phJB×B
17 14 16 eqtr4di φB=B/R